lunadebruyne commited on
Commit
fc18efa
·
1 Parent(s): 4853fe0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -371,7 +371,7 @@ def topics(output_file, input_checks):
371
 
372
  with gr.Blocks() as demo:
373
  with gr.Row():
374
- with gr.Column(scale=1, min_width=100):
375
  gr.Markdown("""
376
  """)
377
  with gr.Column(scale=6, min_width=600):
@@ -382,11 +382,11 @@ with gr.Blocks() as demo:
382
 
383
  This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
384
  """)
385
- with gr.Column(scale=1, min_width=100):
386
  gr.Markdown("""
387
  """)
388
  with gr.Row():
389
- with gr.Column(scale=1, min_width=100):
390
  gr.Markdown("""
391
  """)
392
  with gr.Column(scale=6, min_width=600):
@@ -469,12 +469,12 @@ with gr.Blocks() as demo:
469
  next_button_topics.click(fn=topics, inputs=[output_file,input_checks], outputs=output_topics)
470
  send_btn.click(fn=unavailable, inputs=[input_file,input_checks], outputs=[output_markdown,message])
471
  demo_btn.click(fn=showcase, inputs=[input_file], outputs=[output_markdown,message,output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
472
- with gr.Column(scale=1, min_width=100):
473
  gr.Markdown("""
474
  """)
475
 
476
  with gr.Row():
477
- with gr.Column(scale=1, min_width=100):
478
  gr.Markdown("""
479
  """)
480
  with gr.Column(scale=6, min_width=600):
@@ -483,7 +483,7 @@ with gr.Blocks() as demo:
483
 
484
  <div style="display: flex"><img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>
485
  """)
486
- with gr.Column(scale=1, min_width=100):
487
  gr.Markdown("""
488
  """)
489
  demo.launch()
 
371
 
372
  with gr.Blocks() as demo:
373
  with gr.Row():
374
+ with gr.Column(scale=1):
375
  gr.Markdown("""
376
  """)
377
  with gr.Column(scale=6, min_width=600):
 
382
 
383
  This demo was made to demonstrate the EmotioNL model, a transformer-based classification model that analyses emotions in Dutch texts. The model uses [RobBERT](https://github.com/iPieter/RobBERT), which was further fine-tuned on the [EmotioNL dataset](https://lt3.ugent.be/resources/emotionl/). The resulting model is a classifier that, given a sentence, predicts one of the following emotion categories: _anger_, _fear_, _joy_, _love_, _sadness_ or _neutral_. The demo can be used either in **sentence mode**, which allows you to enter a sentence for which an emotion will be predicted; or in **dataset mode**, which allows you to upload a dataset or see the full functuonality of with example data.
384
  """)
385
+ with gr.Column(scale=1):
386
  gr.Markdown("""
387
  """)
388
  with gr.Row():
389
+ with gr.Column(scale=1):
390
  gr.Markdown("""
391
  """)
392
  with gr.Column(scale=6, min_width=600):
 
469
  next_button_topics.click(fn=topics, inputs=[output_file,input_checks], outputs=output_topics)
470
  send_btn.click(fn=unavailable, inputs=[input_file,input_checks], outputs=[output_markdown,message])
471
  demo_btn.click(fn=showcase, inputs=[input_file], outputs=[output_markdown,message,output_file,next_button_freq,next_button_dist,next_button_peaks,next_button_topics])
472
+ with gr.Column(scale=1):
473
  gr.Markdown("""
474
  """)
475
 
476
  with gr.Row():
477
+ with gr.Column(scale=1):
478
  gr.Markdown("""
479
  """)
480
  with gr.Column(scale=6, min_width=600):
 
483
 
484
  <div style="display: flex"><img style="margin-right: 1em" alt="LT3 logo" src="https://lt3.ugent.be/static/images/logo_v2_single.png" width="136" height="58"> <img style="margin-right: 1em" alt="FWO logo" src="https://www.fwo.be/images/logo_desktop.png" height="58"></div>
485
  """)
486
+ with gr.Column(scale=1):
487
  gr.Markdown("""
488
  """)
489
  demo.launch()