leandro
commited on
Commit
•
59b2635
1
Parent(s):
c39ea01
initial draft
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.26.0
|
|
|
1 |
---
|
2 |
+
title: Harm Space
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: gray
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.26.0
|
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib
|
3 |
+
matplotlib.use('Agg')
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from matplotlib.ticker import MultipleLocator
|
7 |
+
|
8 |
+
HARM_INTRO = """
|
9 |
+
The Chinchilla scaling laws focus on optimally scaling training compute but often we also care about inference cost.
|
10 |
+
This tool follows [Harm de Vries' blog post](https://www.harmdevries.com/post/model-size-vs-compute-overhead/) and visualizes the tradeoff between training comput and inference cost (i.e. model size).
|
11 |
+
"""
|
12 |
+
|
13 |
+
### GPU specs:
|
14 |
+
A100_flops = 312e12
|
15 |
+
H100_flops = 990e12
|
16 |
+
|
17 |
+
### CHINCHILLA PARAMS:
|
18 |
+
E = 1.62
|
19 |
+
A = 406.4
|
20 |
+
B = 410.7
|
21 |
+
alpha = 0.336
|
22 |
+
beta = 0.283
|
23 |
+
|
24 |
+
Bn = 10**9
|
25 |
+
|
26 |
+
G = ((alpha*A)/(beta*B))**(1/(alpha+beta))
|
27 |
+
|
28 |
+
### FUNCTIONS
|
29 |
+
def to_flops(N, D):
|
30 |
+
return 6 * N * D
|
31 |
+
|
32 |
+
def n_opt(C):
|
33 |
+
return G * ((C/6) ** (beta / (alpha+beta)))
|
34 |
+
|
35 |
+
def d_opt(C):
|
36 |
+
return (1/G) * ((C/6) ** (alpha / (alpha+beta)))
|
37 |
+
|
38 |
+
def compute_kd(kn):
|
39 |
+
frac = (A/B)*(G**(-alpha-beta))
|
40 |
+
kd = (1-((kn**-alpha -1)*frac))**(1/(-beta))
|
41 |
+
return kd
|
42 |
+
|
43 |
+
def compute_overhead(kn, kd):
|
44 |
+
return kn*kd - 1
|
45 |
+
|
46 |
+
### PRECOMPUTE CURVE:
|
47 |
+
kn_min = 0.18
|
48 |
+
kn_max = 2
|
49 |
+
|
50 |
+
kns = np.linspace(kn_min, kn_max, 100)
|
51 |
+
overheads = []
|
52 |
+
for kn in kns:
|
53 |
+
kd = compute_kd(kn)
|
54 |
+
overheads.append(compute_overhead(kn, kd)*100)
|
55 |
+
|
56 |
+
def plot_curve(kn, kd):
|
57 |
+
fig, ax = plt.subplots(dpi=200, figsize=(5, 3))
|
58 |
+
plt.plot(kns, overheads, color="black", zorder=1)
|
59 |
+
plt.scatter([kn], [compute_overhead(kn, kd)*100], s=100, marker="o", c="red", label="You are here!", zorder=2)
|
60 |
+
plt.scatter([1.0], [0.0], marker="o", s=100, c="blue", label="Chinchilla optimal", zorder=2)
|
61 |
+
plt.xlabel("Fraction of Chinchilla optimal model size")
|
62 |
+
plt.ylabel("Compute overhead (%)")
|
63 |
+
plt.legend(loc="best")
|
64 |
+
plt.grid(True, which="both")
|
65 |
+
plt.grid(True, which="minor", alpha=0.5)
|
66 |
+
ax.yaxis.set_minor_locator(MultipleLocator(10))
|
67 |
+
plt.tight_layout()
|
68 |
+
|
69 |
+
return fig
|
70 |
+
|
71 |
+
|
72 |
+
def compute(N, D, gpu_type, gpu_util, n_gpus, gpu_price):
|
73 |
+
|
74 |
+
C = to_flops(N * Bn, D * Bn)
|
75 |
+
N_opt = n_opt(C)
|
76 |
+
D_opt = d_opt(C)
|
77 |
+
|
78 |
+
kn = Bn*N/N_opt
|
79 |
+
kd = compute_kd(kn)
|
80 |
+
|
81 |
+
fig = plot_curve(kn, kd)
|
82 |
+
|
83 |
+
|
84 |
+
gpu_util = 0.5
|
85 |
+
if gpu_type=="H100":
|
86 |
+
gpu_flops = H100_flops * gpu_util
|
87 |
+
else:
|
88 |
+
gpu_flops = A100_flops * gpu_util
|
89 |
+
gpu_hours = (C / (gpu_flops * 3600))
|
90 |
+
|
91 |
+
|
92 |
+
text = f"""\
|
93 |
+
## Training summary
|
94 |
+
|
95 |
+
|Training compute| Training cost | Training time | Total GPU hours |
|
96 |
+
|:----|:-------|:-------|:-------|
|
97 |
+
|{C:.2E} TFLOPs | ${(gpu_hours * gpu_price)/1e6:.2f}M | {gpu_hours/(24*n_gpus):.2f} days | {gpu_hours/1_000_000:.2f}M |
|
98 |
+
|
99 |
+
## Chinchilla and Training/Inference Trade-off
|
100 |
+
Optimal model/dataset size for training compute and how it translates to training overhead and inference savings according to Harm's law
|
101 |
+
|Chinchilla optimal model | Chinchilla optimal dataset | Training overhead | Inference savings|
|
102 |
+
|:----|:-------|:----|:-------|
|
103 |
+
| {N_opt/Bn:.2f}B parameters | {D_opt/Bn:.2f}B tokens | {100*compute_overhead(kn, kd):.2f}%| {100 - kn*100:.2f}% |
|
104 |
+
"""
|
105 |
+
|
106 |
+
return text, fig
|
107 |
+
|
108 |
+
with gr.Blocks() as demo:
|
109 |
+
gr.Markdown("# LLM training calculator")
|
110 |
+
|
111 |
+
gr.Markdown("## Training configuration")
|
112 |
+
with gr.Row():
|
113 |
+
|
114 |
+
N = gr.Number(value=7, label="Model size (in B parameters):")
|
115 |
+
D = gr.Number(value=2000, label="Dataset size (in B tokens):")
|
116 |
+
|
117 |
+
gr.Markdown("## Cluster configuration")
|
118 |
+
with gr.Row():
|
119 |
+
n_gpus = gr.Number(value=1000, label="Number of GPUs")
|
120 |
+
gpu_type = gr.Dropdown(choices=["A100", "H100"], value="H100", label="GPU type")
|
121 |
+
gpu_util = gr.Number(value=50, label="% GPU utilization")
|
122 |
+
gpu_price = gr.Number(value=3.00, label="$/GPU/Hour")
|
123 |
+
button = gr.Button("Compute!")
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
gr.Markdown("## Harm's law")
|
128 |
+
plot = gr.Plot(value=plt)
|
129 |
+
gr.Markdown(HARM_INTRO)
|
130 |
+
|
131 |
+
with gr.Column():
|
132 |
+
md = gr.Markdown("")
|
133 |
+
|
134 |
+
button.click(fn=compute, inputs=[N, D, gpu_type, gpu_util, n_gpus, gpu_price], outputs=[md, plot])
|
135 |
+
demo.load(fn=compute, inputs=[N, D, gpu_type, gpu_util, n_gpus, gpu_price], outputs=[md, plot])
|
136 |
+
demo.launch()
|