Spaces:
Running
Running
/** | |
* A simple 2d implementation of simplex noise by Ondrej Zara | |
* | |
* Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. | |
* Which is based on example code by Stefan Gustavson (stegu@itn.liu.se). | |
* With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). | |
* Better rank ordering method by Stefan Gustavson in 2012. | |
*/ | |
/** | |
* @class 2D simplex noise generator | |
* @param {int} [gradients=256] Random gradients | |
*/ | |
ROT.Noise.Simplex = function(gradients) { | |
ROT.Noise.call(this); | |
this._F2 = 0.5 * (Math.sqrt(3) - 1); | |
this._G2 = (3 - Math.sqrt(3)) / 6; | |
this._gradients = [ | |
[ 0, -1], | |
[ 1, -1], | |
[ 1, 0], | |
[ 1, 1], | |
[ 0, 1], | |
[-1, 1], | |
[-1, 0], | |
[-1, -1] | |
]; | |
var permutations = []; | |
var count = gradients || 256; | |
for (var i=0;i<count;i++) { permutations.push(i); } | |
permutations = permutations.randomize(); | |
this._perms = []; | |
this._indexes = []; | |
for (var i=0;i<2*count;i++) { | |
this._perms.push(permutations[i % count]); | |
this._indexes.push(this._perms[i] % this._gradients.length); | |
} | |
}; | |
ROT.Noise.Simplex.extend(ROT.Noise); | |
ROT.Noise.Simplex.prototype.get = function(xin, yin) { | |
var perms = this._perms; | |
var indexes = this._indexes; | |
var count = perms.length/2; | |
var G2 = this._G2; | |
var n0 =0, n1 = 0, n2 = 0, gi; // Noise contributions from the three corners | |
// Skew the input space to determine which simplex cell we're in | |
var s = (xin + yin) * this._F2; // Hairy factor for 2D | |
var i = Math.floor(xin + s); | |
var j = Math.floor(yin + s); | |
var t = (i + j) * G2; | |
var X0 = i - t; // Unskew the cell origin back to (x,y) space | |
var Y0 = j - t; | |
var x0 = xin - X0; // The x,y distances from the cell origin | |
var y0 = yin - Y0; | |
// For the 2D case, the simplex shape is an equilateral triangle. | |
// Determine which simplex we are in. | |
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords | |
if (x0 > y0) { | |
i1 = 1; | |
j1 = 0; | |
} else { // lower triangle, XY order: (0,0)->(1,0)->(1,1) | |
i1 = 0; | |
j1 = 1; | |
} // upper triangle, YX order: (0,0)->(0,1)->(1,1) | |
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and | |
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where | |
// c = (3-sqrt(3))/6 | |
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords | |
var y1 = y0 - j1 + G2; | |
var x2 = x0 - 1 + 2*G2; // Offsets for last corner in (x,y) unskewed coords | |
var y2 = y0 - 1 + 2*G2; | |
// Work out the hashed gradient indices of the three simplex corners | |
var ii = i.mod(count); | |
var jj = j.mod(count); | |
// Calculate the contribution from the three corners | |
var t0 = 0.5 - x0*x0 - y0*y0; | |
if (t0 >= 0) { | |
t0 *= t0; | |
gi = indexes[ii+perms[jj]]; | |
var grad = this._gradients[gi]; | |
n0 = t0 * t0 * (grad[0] * x0 + grad[1] * y0); | |
} | |
var t1 = 0.5 - x1*x1 - y1*y1; | |
if (t1 >= 0) { | |
t1 *= t1; | |
gi = indexes[ii+i1+perms[jj+j1]]; | |
var grad = this._gradients[gi]; | |
n1 = t1 * t1 * (grad[0] * x1 + grad[1] * y1); | |
} | |
var t2 = 0.5 - x2*x2 - y2*y2; | |
if (t2 >= 0) { | |
t2 *= t2; | |
gi = indexes[ii+1+perms[jj+1]]; | |
var grad = this._gradients[gi]; | |
n2 = t2 * t2 * (grad[0] * x2 + grad[1] * y2); | |
} | |
// Add contributions from each corner to get the final noise value. | |
// The result is scaled to return values in the interval [-1,1]. | |
return 70 * (n0 + n1 + n2); | |
} | |