File size: 3,707 Bytes
620cefc
 
 
 
e70d647
620cefc
 
 
 
 
 
 
 
 
03a9d25
 
620cefc
 
 
03a9d25
 
620cefc
 
 
e70d647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
620cefc
 
 
e70d647
620cefc
e70d647
620cefc
 
 
 
 
e70d647
620cefc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70d647
620cefc
 
 
e70d647
620cefc
 
e70d647
 
 
 
 
620cefc
 
e70d647
 
620cefc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os, sys
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
from sklearn.metrics.pairwise import paired_cosine_distances
from sklearn.preprocessing import normalize
from rolaser import RoLaserEncoder

laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt"
laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab"
laser_tokenizer = 'spm'
laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer)

rolaser_checkpoint = f"{os.environ['ROLASER']}/models/rolaser.pt"
rolaser_vocab = f"{os.environ['ROLASER']}/models/rolaser.cvocab"
rolaser_tokenizer = 'roberta'
rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer)

c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-rolaser.pt"
c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab"
c_rolaser_tokenizer = 'char'
c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer)


STD_SENTENCES = ['See you tomorrow.'] * 10
UGC_SENTENCES = [
    'See you tmrw.',
    'See you t03orro3.',
    'C. U. tomorrow.',
    'sea you tomorrow.',
    'See yo utomorrow.',
    'See you tkmoerow.',
    'Cu 2moro.',
    'See yow tomorrow.',
    'C. Yew tomorrow.',
    'c ya 2morrow.'
]

def add_text_inputs(i):
    col1, col2 = st.columns(2)
    with col1:
        text_input1 = st.text_input('Enter standard text here:', key=f'std{i}', value=STD_SENTENCES[i])
    with col2:
        text_input2 = st.text_input('Enter non-standard text here:', key=f'ugc{i}', value=UGC_SENTENCES[i])
    return text_input1, text_input2

def main():
    st.title('Pairwise Cosine Distance Calculator')

    num_pairs = st.sidebar.number_input('Number of Text Input Pairs', min_value=1, max_value=10, value=5)

    std_text_inputs = []
    ugc_text_inputs = []
    for i in range(num_pairs):
        pair = add_text_inputs(i)
        std_text_inputs.append(pair[0])
        ugc_text_inputs.append(pair[1])

    if st.button('Submit'):
        X_std_laser = normalize(laser_model.encode(std_text_inputs))
        X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs))
        X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser)

        X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs))
        X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs))
        X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser)

        X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs))
        X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs))
        X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser)

        outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos'])
        outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs)   
        outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3)
        outputs['std'] = np.tile(std_text_inputs, 3)
        outputs['ugc'] = np.tile(ugc_text_inputs, 3)
        outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser])

        st.write('## Cosine Distance Scores:')
        fig = px.bar(outputs, x='x_column', y='y_column', color='model', barmode='group')
        fig.update_layout(title='Cosine Distance Scores')
        fig.update_xaxes(title_text='Text Input Pair')
        fig.update_yaxes(title_text='Cosine Distance')
        st.plotly_chart(fig, use_container_width=True)

        st.write('## Average Cosine Distance Scores:')
        st.write(outputs.groupby('model')['cos'].describe())

        
if __name__ == "__main__":
    main()