Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
import plotly.graph_objects as go | |
from sklearn.metrics.pairwise import paired_cosine_distances | |
from sklearn.preprocessing import normalize | |
from rolaser import RoLaserEncoder | |
def load_models(): | |
laser_checkpoint = f"{os.environ['LASER']}/models/laser2.pt" | |
laser_vocab = f"{os.environ['LASER']}/models/laser2.cvocab" | |
laser_tokenizer = 'spm' | |
laser_model = RoLaserEncoder(model_path=laser_checkpoint, vocab=laser_vocab, tokenizer=laser_tokenizer) | |
rolaser_checkpoint = f"{os.environ['ROLASER']}/models/rolaser.pt" | |
rolaser_vocab = f"{os.environ['ROLASER']}/models/rolaser.cvocab" | |
rolaser_tokenizer = 'roberta' | |
rolaser_model = RoLaserEncoder(model_path=rolaser_checkpoint, vocab=rolaser_vocab, tokenizer=rolaser_tokenizer) | |
c_rolaser_checkpoint = f"{os.environ['ROLASER']}/models/c-rolaser.pt" | |
c_rolaser_vocab = f"{os.environ['ROLASER']}/models/c-rolaser.cvocab" | |
c_rolaser_tokenizer = 'char' | |
c_rolaser_model = RoLaserEncoder(model_path=c_rolaser_checkpoint, vocab=c_rolaser_vocab, tokenizer=c_rolaser_tokenizer) | |
return laser_model, rolaser_model, c_rolaser_model | |
def load_sample_data(): | |
STD_SENTENCES = ['See you tomorrow.'] * 10 | |
UGC_SENTENCES = [ | |
'See you t03orro3.', | |
'C. U. tomorrow.', | |
'sea you tomorrow.', | |
'See yo utomorrow.', | |
'Cu 2moro.', | |
'See you tkmoerow.', | |
'See yow tomorrow.', | |
'See you tmrw.', | |
'C. Yew tomorrow.', | |
'c ya 2morrow.' | |
] | |
return STD_SENTENCES, UGC_SENTENCES | |
def main(): | |
sample_std, sample_ugc = load_sample_data() | |
laser_model, rolaser_model, c_rolaser_model = load_models() | |
st.title('Pairwise Cosine Distance Calculator') | |
info = ''' | |
:bookmark: **Paper:** [Making Sentence Embeddings Robust to User-Generated Content (Nishimwe et al., 2024)](https://arxiv.org/abs/2403.17220) | |
:link: **Github:** [https://github.com/lydianish/RoLASER](https://github.com/lydianish/RoLASER) | |
:computer: **Demo:** This app computes the cosine distance between standard and non-standard text input pairs using LASER, RoLASER, and c-RoLASER models. | |
''' | |
st.markdown(info) | |
st.header('Standard and Non-standard Text Input Pairs') | |
cols = st.columns(3) | |
num_pairs = cols[1].number_input('Number of Text Input Pairs (1-10):', min_value=1, max_value=10, value=5) | |
with st.form('text_input_form'): | |
std_text_inputs = [] | |
ugc_text_inputs = [] | |
for i in range(num_pairs): | |
col1, col2 = st.columns(2) | |
with col1: | |
text_input1 = st.text_input(f'Standard text {i+1}:', key=f'std{i}', value=sample_std[i]) | |
std_text_inputs.append(text_input1) | |
with col2: | |
text_input2 = st.text_input(f'Non-standard text {i+1}:', key=f'ugc{i}', value=sample_ugc[i]) | |
ugc_text_inputs.append(text_input2) | |
st.caption('*The models are case-insensitive: all texts will be lowercased.*') | |
st.form_submit_button('Compute') | |
X_std_laser = normalize(laser_model.encode(std_text_inputs)) | |
X_ugc_laser = normalize(laser_model.encode(ugc_text_inputs)) | |
X_cos_laser = paired_cosine_distances(X_std_laser, X_ugc_laser) | |
X_std_rolaser = normalize(rolaser_model.encode(std_text_inputs)) | |
X_ugc_rolaser = normalize(rolaser_model.encode(ugc_text_inputs)) | |
X_cos_rolaser = paired_cosine_distances(X_std_rolaser, X_ugc_rolaser) | |
X_std_c_rolaser = normalize(c_rolaser_model.encode(std_text_inputs)) | |
X_ugc_c_rolaser = normalize(c_rolaser_model.encode(ugc_text_inputs)) | |
X_cos_c_rolaser = paired_cosine_distances(X_std_c_rolaser, X_ugc_c_rolaser) | |
outputs = pd.DataFrame(columns=[ 'model', 'pair', 'ugc', 'std', 'cos']) | |
outputs['model'] = np.repeat(['LASER', 'RoLASER', 'c-RoLASER'], num_pairs) | |
outputs['pair'] = np.tile(np.arange(1,num_pairs+1), 3) | |
outputs['std'] = np.tile(std_text_inputs, 3) | |
outputs['ugc'] = np.tile(ugc_text_inputs, 3) | |
outputs['cos'] = np.concatenate([X_cos_laser, X_cos_rolaser, X_cos_c_rolaser]) | |
st.header('Cosine Distance Scores') | |
st.caption('*This bar plot is interactive: Hover on the bars to display values. Click on the legend items to filter models.*') | |
fig = px.bar(outputs, x='pair', y='cos', color='model', barmode='group', hover_data=['ugc', 'std']) | |
fig.update_xaxes(title_text='Text Input Pair') | |
fig.update_yaxes(title_text='Cosine Distance') | |
st.plotly_chart(fig, use_container_width=True) | |
if num_pairs > 1: | |
st.header('Cosine Distance Statistics') | |
st.caption('*This box plot is interactive: Hover on the boxes to display values. Click on the legend items to filter models.*') | |
fig = go.Figure() | |
fig.add_trace(go.Box( | |
y=outputs[outputs['model']=='LASER']['cos'], | |
name='LASER', | |
boxmean='sd' | |
)) | |
fig.add_trace(go.Box( | |
y=outputs[outputs['model']=='RoLASER']['cos'], | |
name='RoLASER', | |
boxmean='sd' | |
)) | |
fig.add_trace(go.Box( | |
y=outputs[outputs['model']=='c-RoLASER']['cos'], | |
name='c-RoLASER', | |
boxmean='sd' | |
)) | |
fig.update_xaxes(title_text='Model') | |
fig.update_yaxes(title_text='Cosine Distance') | |
st.plotly_chart(fig, use_container_width=True) | |
if __name__ == "__main__": | |
main() | |