import gradio as gr import pandas as pd from PIL import Image from torchkeras import plots from torchkeras.data import get_url_img from pathlib import Path from ultralytics import YOLO import ultralytics from ultralytics.yolo.data import utils model = YOLO('yolov8n.pt') #load class_names yaml_path = str(Path(ultralytics.__file__).parent/'datasets/coco128.yaml') class_names = utils.yaml_load(yaml_path)['names'] def detect(img): if isinstance(img,str): img = get_url_img(img) if img.startswith('http') else Image.open(img).convert('RGB') result = model.predict(source=img) if len(result[0].boxes.boxes)>0: vis = plots.plot_detection(img,boxes=result[0].boxes.boxes, class_names=class_names, min_score=0.2) else: vis = img return vis with gr.Blocks() as demo: with gr.Tab("Webcam"): input_img = gr.Image(source='webcam',type='pil') button = gr.Button("Detect",variant="primary") gr.Markdown("## Output") out_img = gr.Image(type='pil') button.click(detect, inputs=input_img, outputs=out_img) with gr.Tab("Url"): default_url = 'https://t7.baidu.com/it/u=3601447414,1764260638&fm=193&f=GIF' url = gr.Textbox(value=default_url) button = gr.Button("Detect",variant="primary") gr.Markdown("## Output") out_img = gr.Image(type='pil') button.click(detect, inputs=url, outputs=out_img) with gr.Tab("Upload"): input_img = gr.Image(type='pil') button = gr.Button("Detect",variant="primary") gr.Markdown("## Output") out_img = gr.Image(type='pil') button.click(detect, inputs=input_img, outputs=out_img) gr.close_all() demo.queue() demo.launch()