File size: 12,780 Bytes
e0a58f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import streamlit as st
from Bio import pairwise2
from Bio.Seq import Seq
import re
from collections import defaultdict
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go

# Define resistance genes and mutation patterns
RESISTANCE_GENES = {
    'rpoB': {
        'start': 759807,
        'end': 763325,
        'description': 'RNA polymerase β subunit',
        'drug': 'Rifampicin',
        'mutations': {
            '531': {'from': 'S', 'to': ['L'], 'freq': 'High', 'confidence': 'High'},
            '526': {'from': 'H', 'to': ['Y', 'D', 'R'], 'freq': 'High', 'confidence': 'High'},
            '516': {'from': 'D', 'to': ['V', 'G'], 'freq': 'Moderate', 'confidence': 'High'},
            '511': {'from': 'L', 'to': ['P'], 'freq': 'Low', 'confidence': 'Moderate'}
        }
    },
    'katG': {
        'start': 2153889,
        'end': 2156111,
        'description': 'Catalase-peroxidase',
        'drug': 'Isoniazid',
        'mutations': {
            '315': {'from': 'S', 'to': ['T', 'N'], 'freq': 'High', 'confidence': 'High'},
            '463': {'from': 'R', 'to': ['L'], 'freq': 'Moderate', 'confidence': 'Moderate'}
        }
    },
    'inhA': {
        'start': 1674202,
        'end': 1675011,
        'description': 'Enoyl-ACP reductase',
        'drug': 'Isoniazid/Ethionamide',
        'mutations': {
            '-15': {'from': 'C', 'to': ['T'], 'freq': 'High', 'confidence': 'High'},
            '94':  {'from': 'S', 'to': ['A'], 'freq': 'Moderate', 'confidence': 'High'}
        }
    },
    'gyrA': {
        'start': 7302,
        'end': 9818,
        'description': 'DNA gyrase subunit A',
        'drug': 'Fluoroquinolones',
        'mutations': {
            '90': {'from': 'A', 'to': ['V'], 'freq': 'High', 'confidence': 'High'},
            '94': {'from': 'D', 'to': ['G', 'A', 'N'], 'freq': 'High', 'confidence': 'High'}
        }
    }
}

# File reading functions
def read_fasta_file(file_path):
    """Read a FASTA file from disk"""
    try:
        with open(file_path, 'r') as handle:
            content = handle.read().strip()
            parts = content.split('\n', 1)
            sequence = ''.join(parts[1].split('\n')).replace(' ', '')
            return sequence.upper()
    except Exception as e:
        st.error(f"Error reading file {file_path}: {str(e)}")
        return None

def read_fasta_from_upload(uploaded_file):
    """Read a FASTA file from Streamlit upload"""
    try:
        content = uploaded_file.getvalue().decode('utf-8').strip()
        parts = content.split('\n', 1)
        sequence = ''.join(parts[1].split('\n')).replace(' ', '')
        return sequence.upper()
    except Exception as e:
        st.error(f"Error reading uploaded file: {str(e)}")
        return None

# Region extraction function
def extract_gene_region(genome_seq, gene_start, gene_end):
    """Extract a gene region with 200bp flanking for alignment context"""
    flank = 200
    start = max(0, gene_start - flank)
    end = min(len(genome_seq), gene_end + flank)
    extracted_seq = genome_seq[start:end]
    return extracted_seq, start

# Codon alignment extraction
def extract_codon_alignment(ref_aligned, query_aligned, gene_start, gene_end, offset):
    """Extract codon-level differences from aligned sequences"""
    codon_list = []
    real_pos = 0
    ref_codon = []
    query_codon = []
    
    for i in range(len(ref_aligned)):
        ref_base = ref_aligned[i]
        query_base = query_aligned[i]
        if ref_base != '-':
            real_pos += 1
            ref_codon.append(ref_base)
            query_codon.append(query_base if query_base != '-' else 'N')
            if len(ref_codon) == 3:
                codon_start_pos = offset + (real_pos - 3)
                if (codon_start_pos >= gene_start) and (codon_start_pos + 2 <= gene_end):
                    ref_aa = str(Seq(''.join(ref_codon)).translate())
                    query_aa = str(Seq(''.join(query_codon)).translate())
                    gene_nt_pos = codon_start_pos - gene_start + 1
                    codon_number = (gene_nt_pos - 1) // 3 + 1
                    if ref_aa != query_aa:
                        codon_list.append({
                            'codon_number': codon_number,
                            'ref_aa': ref_aa,
                            'query_aa': query_aa
                        })
                ref_codon = []
                query_codon = []
    return codon_list

# Mutation detection
def find_mutations_with_context(ref_seq, query_seq, gene_start, gene_end, offset=0):
    """Find codon-level and nucleotide-level mutations"""
    alignments = pairwise2.align.globalms(ref_seq, query_seq, match=2, mismatch=-3, open=-10, extend=-0.5)
    if not alignments:
        return {'codon_diffs': [], 'nt_diffs': []}
    ref_aligned, query_aligned = alignments[0][0], alignments[0][1]
    codon_diffs = extract_codon_alignment(ref_aligned, query_aligned, gene_start, gene_end, offset)
    nt_diffs = []
    ref_pos = 0
    for i in range(len(ref_aligned)):
        ref_base = ref_aligned[i]
        query_base = query_aligned[i]
        if ref_base != '-':
            ref_pos += 1
            actual_genome_pos = offset + ref_pos
            if ref_base != query_base and query_base != '-':
                nt_diffs.append({
                    'genome_pos': actual_genome_pos,
                    'ref_base': ref_base,
                    'query_base': query_base
                })
    return {'codon_diffs': codon_diffs, 'nt_diffs': nt_diffs}

# Resistance analysis
def analyze_resistance(mutation_data, gene_info):
    """Match mutations to known resistance patterns"""
    codon_diffs = mutation_data['codon_diffs']
    nt_diffs = mutation_data['nt_diffs']
    resistance_found = []
    for key_str, pattern in gene_info['mutations'].items():
        key_val = int(key_str)
        if key_val > 0:
            for diff in codon_diffs:
                if diff['codon_number'] == key_val and diff['ref_aa'] == pattern['from'] and diff['query_aa'] in pattern['to']:
                    resistance_found.append({
                        'position': key_str,
                        'change': f"{pattern['from']}{key_str}{diff['query_aa']}",
                        'frequency': pattern['freq'],
                        'confidence': pattern['confidence']
                    })
        else:
            promoter_genome_pos = gene_info['start'] + key_val
            for diff in nt_diffs:
                if diff['genome_pos'] == promoter_genome_pos and diff['ref_base'] == pattern['from'] and diff['query_base'] in pattern['to']:
                    resistance_found.append({
                        'position': key_str,
                        'change': f"{pattern['from']}{key_str}{diff['query_base']}",
                        'frequency': pattern['freq'],
                        'confidence': pattern['confidence']
                    })
    return resistance_found

# Main Streamlit app
def main():
    st.title("M. tuberculosis Drug Resistance Analysis")
    st.markdown("""
    ### Automated Drug Resistance Analysis Tool
    Upload your query genome (clinical isolate) in FASTA format to compare with the H37Rv reference.
    **Note**: Detects codon-based (e.g., rpoB S531L) and nucleotide-based (e.g., inhA -15C>T) mutations.
    """)
    
    debug_mode = st.checkbox("Enable debug mode")
    ref_genome = read_fasta_file("NC_000962.3.fasta")
    if not ref_genome:
        st.error("Failed to load reference genome")
        return
    st.success(f"Reference genome loaded (length: {len(ref_genome)}bp)")
    
    query_file = st.file_uploader("Upload Query Genome (FASTA)", type=['fasta', 'fa'])
    if query_file and st.button("Analyze Drug Resistance"):
        query_genome = read_fasta_from_upload(query_file)
        if not query_genome:
            return
        st.success(f"Query genome loaded (length: {len(query_genome)}bp)")
        
        progress_bar = st.progress(0)
        status_text = st.empty()
        all_results = {}
        
        for i, (gene, info) in enumerate(RESISTANCE_GENES.items()):
            status_text.text(f"Analyzing {gene} ({info['drug']})...")
            progress_bar.progress((i + 1) / len(RESISTANCE_GENES))
            if debug_mode:
                st.subheader(f"Analyzing {gene}")
                st.write(f"Gene region: {info['start']}-{info['end']}")
            ref_region, ref_start = extract_gene_region(ref_genome, info['start'], info['end'])
            query_region, _ = extract_gene_region(query_genome, info['start'], info['end'])
            if ref_region and query_region:
                mutation_data = find_mutations_with_context(ref_region, query_region, info['start'], info['end'], ref_start)
                resistance = analyze_resistance(mutation_data, info)
                all_results[gene] = {'mutation_data': mutation_data, 'resistance': resistance}
                if debug_mode:
                    st.write(f"Codon diffs: {len(mutation_data['codon_diffs'])}", mutation_data['codon_diffs'])
                    st.write(f"Nucleotide diffs: {len(mutation_data['nt_diffs'])}", mutation_data['nt_diffs'])
                    st.write(f"Resistance patterns: {len(resistance)}")
            else:
                st.error(f"Failed to analyze {gene}")
        
        progress_bar.empty()
        status_text.empty()
        
        # Summary table
        summary_data = [
            {
                'Gene': gene,
                'Drug': RESISTANCE_GENES[gene]['drug'],
                'Codon Diffs': len(results['mutation_data']['codon_diffs']),
                'Nucleotide Diffs': len(results['mutation_data']['nt_diffs']),
                'Resistance Mutations': len(results['resistance'])
            }
            for gene, results in all_results.items()
        ]
        summary_df = pd.DataFrame(summary_data)
        def highlight_resistance(row):
            return ['background-color: yellow' if row['Resistance Mutations'] > 0 else '' for _ in row]
        styled_summary = summary_df.style.apply(highlight_resistance, axis=1)
        st.subheader("Summary of Analysis")
        st.dataframe(styled_summary)
        
        # Detailed results
        for gene, results in all_results.items():
            st.subheader(f"{gene} Analysis")
            info = RESISTANCE_GENES[gene]
            st.write(f"**Drug**: {info['drug']}")
            st.write(f"**Codon-level differences**: {len(results['mutation_data']['codon_diffs'])}")
            st.write(f"**Nucleotide-level differences**: {len(results['mutation_data']['nt_diffs'])}")
            if results['resistance']:
                st.warning(f"Potential resistance mutations found in {gene}")
                resistance_df = pd.DataFrame(results['resistance'])
                st.dataframe(resistance_df)
            else:
                st.info(f"No known resistance mutations found in {gene}")
        
        # Download button
        st.markdown("### Download Complete Analysis")
        st.write("Download a CSV file with all mutation and resistance data.")
        report_data = []
        for gene, results in all_results.items():
            for diff in results['mutation_data']['codon_diffs']:
                report_data.append({
                    'Gene': gene,
                    'Drug': RESISTANCE_GENES[gene]['drug'],
                    'Type': 'Codon_diff',
                    'Codon Number': diff['codon_number'],
                    'Reference AA': diff['ref_aa'],
                    'Query AA': diff['query_aa']
                })
            for diff in results['mutation_data']['nt_diffs']:
                report_data.append({
                    'Gene': gene,
                    'Drug': RESISTANCE_GENES[gene]['drug'],
                    'Type': 'Nucleotide_diff',
                    'Genome Position': diff['genome_pos'],
                    'Reference Base': diff['ref_base'],
                    'Query Base': diff['query_base']
                })
            for res in results['resistance']:
                report_data.append({
                    'Gene': gene,
                    'Drug': RESISTANCE_GENES[gene]['drug'],
                    'Type': 'Resistance',
                    'Position': res['position'],
                    'Change': res['change'],
                    'Frequency': res['frequency'],
                    'Confidence': res['confidence']
                })
        report_df = pd.DataFrame(report_data)
        csv = report_df.to_csv(index=False)
        st.download_button(
            label="Download Full Report (CSV)",
            data=csv,
            file_name="mtb_analysis_report.csv",
            mime="text/csv"
        )

if __name__ == "__main__":
    main()