File size: 17,226 Bytes
ab05130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9eeeff
ab05130
 
a2a4759
ab05130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a4759
ab05130
 
a2a4759
 
ab05130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objs as go
import folium
from streamlit_folium import st_folium
from datetime import timedelta

# ----------------------------------------------------
# 1. Load data
# ----------------------------------------------------
@st.cache_data
def load_data():
    # Load daily and monthly CSV from local files (or a URL if needed)
    daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
    monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
    # If monthly_df also needs a 'date' column for plotting, you can create:
    # monthly_df["date"] = pd.to_datetime(monthly_df["year"].astype(str) + "-" + monthly_df["month"].astype(str) + "-01")
    return daily_df, monthly_df

daily_data, monthly_data = load_data()

# Pre-define your location dictionary so we can map lat/lon
LOCATIONS = {
    "Karagwe": {"lat": -1.7718, "lon": 30.9876},
    "Masasi":  {"lat": -10.7167, "lon": 38.8000},
    "Igunga":  {"lat": -4.2833, "lon": 33.8833}
}

# ----------------------------------------------------
# 2. Streamlit UI Layout
# ----------------------------------------------------
st.title("Malaria & Dengue Outbreak Analysis (2013–2024)")

st.sidebar.header("Filters & Options")

# Choose disease type to focus on
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"], index=0)

# Choose data granularity
data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"], index=0)

# Let user filter location(s)
location_list = list(LOCATIONS.keys())
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)

# For monthly data, let user select a year range
if data_choice == "Monthly":
    year_min = int(monthly_data["year"].min())
    year_max = int(monthly_data["year"].max())
    year_range = st.sidebar.slider(
        "Select Year Range",
        min_value=year_min, 
        max_value=year_max,
        value=(year_min, year_max),
        step=1
    )
# For daily data, let user select a date range
else:
    date_min = daily_data["date"].min()
    date_max = daily_data["date"].max()
    date_range = st.sidebar.date_input(
        "Select Date Range", 
        [date_min, date_max],
        min_value=date_min,
        max_value=date_max
    )

# ----------------------------------------------------
# 3. Filter data based on user input
# ----------------------------------------------------
if data_choice == "Monthly":
    # Subset monthly data for selected locations
    df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
    # Filter year range
    df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
    
    # Create a "date" column for monthly plotting
    df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")

else:
    # Subset daily data
    df = daily_data[daily_data["location"].isin(selected_locations)].copy()
    # Filter date range
    df = df[(df["date"] >= pd.to_datetime(date_range[0])) & (df["date"] <= pd.to_datetime(date_range[1]))]

# ----------------------------------------------------
# 4. Interactive Plotly Time-Series (Original)
# ----------------------------------------------------
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")

# Decide which columns are relevant for risk
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"

if data_choice == "Monthly":
    # Plot a line chart of risk vs. date
    fig = px.line(
        df, 
        x="date", 
        y=risk_col, 
        color="location", 
        title=f"{disease_choice} Risk Over Time ({data_choice})"
    )
    fig.update_layout(yaxis_title="Risk (0–1)")
    st.plotly_chart(fig, use_container_width=True)
    
    # Temperature & Rainfall side-by-side
    col1, col2 = st.columns(2)
    with col1:
        fig_temp = px.line(
            df, 
            x="date", 
            y="temp_avg", 
            color="location",
            title="Average Temperature (°C)"
        )
        st.plotly_chart(fig_temp, use_container_width=True)
    with col2:
        # 'monthly_rainfall_mm' is total monthly rainfall
        fig_rain = px.line(
            df, 
            x="date", 
            y="monthly_rainfall_mm", 
            color="location",
            title="Monthly Rainfall (mm)"
        )
        st.plotly_chart(fig_rain, use_container_width=True)

    # Show outbreak flags if focusing on monthly
    if disease_choice == "Malaria":
        flag_col = "malaria_outbreak"
    else:
        flag_col = "dengue_outbreak"

    outbreak_months = df[df[flag_col] == True]
    if not outbreak_months.empty:
        st.write(f"**Months with likely {disease_choice} outbreak:**")
        st.dataframe(outbreak_months[[
            "location","year","month","temp_avg",
            "humidity","monthly_rainfall_mm",flag_col
        ]])
    else:
        st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")

else:
    # For daily data, plot daily risk
    fig = px.line(
        df, 
        x="date", 
        y=risk_col, 
        color="location",
        title=f"{disease_choice} Daily Risk Over Time (2013–2024)"
    )
    fig.update_layout(yaxis_title="Risk (0–1)")
    st.plotly_chart(fig, use_container_width=True)
    
    # Temperature & Rainfall side-by-side
    col1, col2 = st.columns(2)
    with col1:
        fig_temp = px.line(
            df, 
            x="date", 
            y="temp_avg", 
            color="location",
            title="Daily Avg Temperature (°C)"
        )
        st.plotly_chart(fig_temp, use_container_width=True)
    with col2:
        fig_rain = px.line(
            df, 
            x="date", 
            y="daily_rainfall_mm", 
            color="location",
            title="Daily Rainfall (mm)"
        )
        st.plotly_chart(fig_rain, use_container_width=True)

# ----------------------------------------------------
# 5. Correlation Heatmap (Original)
# ----------------------------------------------------
st.subheader(f"Correlation Heatmap - {data_choice} Data")

# Option to choose correlation method
corr_method = st.selectbox("Correlation Method", ["pearson", "spearman"], index=0)

# We'll pick relevant numeric columns
if data_choice == "Monthly":
    subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
else:
    subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]

corr_df = df[subset_cols].corr(method=corr_method)
fig_corr = px.imshow(
    corr_df, 
    text_auto=True, 
    aspect="auto",
    title=f"Correlation Matrix of Weather & Risk ({corr_method.capitalize()})"
)
st.plotly_chart(fig_corr, use_container_width=True)

# ----------------------------------------------------
# 6. Interactive Map (Original)
# ----------------------------------------------------
st.subheader("Interactive Map")
st.markdown(
    """
    **Note**: We only have 3 locations. Each marker popup shows some aggregated
    stats for the displayed data range.
    """
)

# Create a base map centered roughly in Tanzania
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)

# Show monthly or daily aggregates in the popups
if data_choice == "Monthly":
    for loc in selected_locations:
        loc_info = LOCATIONS[loc]
        loc_df = df[df["location"] == loc]
        if loc_df.empty:
            continue
        # Basic stats
        avg_risk = loc_df[risk_col].mean()
        avg_temp = loc_df["temp_avg"].mean()
        avg_rain = loc_df["monthly_rainfall_mm"].mean()
        
        # Build popup HTML
        popup_html = f"""
        <b>{loc}</b><br/>
        Disease: {disease_choice}<br/>
        Avg Risk (in selection): {avg_risk:.2f}<br/>
        Avg Temp (°C): {avg_temp:.2f}<br/>
        Avg Rainfall (mm): {avg_rain:.2f}<br/>
        """
        folium.Marker(
            location=[loc_info["lat"], loc_info["lon"]],
            popup=popup_html,
            tooltip=f"{loc} ({disease_choice})"
        ).add_to(m)
else:
    # Daily data
    for loc in selected_locations:
        loc_info = LOCATIONS[loc]
        loc_df = df[df["location"] == loc]
        if loc_df.empty:
            continue
        avg_risk = loc_df[risk_col].mean()
        avg_temp = loc_df["temp_avg"].mean()
        avg_rain = loc_df["daily_rainfall_mm"].mean()
        
        popup_html = f"""
        <b>{loc}</b><br/>
        Disease: {disease_choice}<br/>
        Avg Risk (in selection): {avg_risk:.2f}<br/>
        Avg Temp (°C): {avg_temp:.2f}<br/>
        Avg Rain (mm/day): {avg_rain:.2f}<br/>
        """
        folium.Marker(
            location=[loc_info["lat"], loc_info["lon"]],
            popup=popup_html,
            tooltip=f"{loc} ({disease_choice})"
        ).add_to(m)

# Render Folium map in Streamlit
st_data = st_folium(m, width=700, height=500)

# ----------------------------------------------------
# 7. Additional Explorations (New Features)
# ----------------------------------------------------
st.header("Additional Explorations")

###############################################################################
# 7.1 Compare Malaria & Dengue Risk Side-by-Side (same chart) for the same data
###############################################################################
st.subheader("Compare Malaria & Dengue Risk Over Time")
compare_both = st.checkbox("Compare Both Diseases on One Plot")

if compare_both:
    # We'll create two columns for Malaria & Dengue in the same DF subset
    # Already have "malaria_risk" and "dengue_risk" in the data
    # Filter the same df but plot them together:
    
    # Convert to "long" format for easy plotting with Plotly
    # e.g. columns: date, location, disease, risk
    if data_choice == "Monthly":
        # We have date, location, malaria_risk, dengue_risk
        df_long = df.melt(
            id_vars=["date","location","temp_avg","humidity"],
            value_vars=["malaria_risk","dengue_risk"],
            var_name="disease",
            value_name="risk"
        )
    else:
        df_long = df.melt(
            id_vars=["date","location","temp_avg","humidity"],
            value_vars=["malaria_risk","dengue_risk"],
            var_name="disease",
            value_name="risk"
        )
    
    # We only want to show locations user selected, but the df is already filtered
    # so just plot:
    title_str = "Malaria vs. Dengue Risk"
    fig_compare = px.line(
        df_long, 
        x="date", 
        y="risk", 
        color="location", 
        line_dash="disease",
        title=title_str
    )
    fig_compare.update_layout(yaxis_title="Risk (0–1)")
    st.plotly_chart(fig_compare, use_container_width=True)

##################################################
# 7.2 Scatter Matrix (Pairwise relationships)
##################################################
st.subheader("Scatter Matrix of Risk & Weather Parameters")

# Let user choose which columns to include (besides the default subset)
scatter_cols = st.multiselect(
    "Choose additional columns to include in Scatter Matrix (besides risk & weather).",
    ["temp_avg","humidity","monthly_rainfall_mm","daily_rainfall_mm","malaria_risk","dengue_risk"],
    default=["temp_avg","humidity","malaria_risk","dengue_risk"]
)

if len(scatter_cols) < 2:
    st.warning("Please select at least two columns to generate a scatter matrix.")
else:
    # Prepare data for scatter matrix
    sm_df = df[scatter_cols].copy()
    # For monthly vs daily, the rainfall column might differ
    # If user selected 'monthly_rainfall_mm' but the data is daily, that column might not exist.
    # So we can drop missing columns gracefully:
    sm_df = sm_df.dropna(axis=1, how='all')
    
    # Using Plotly's scatter_matrix:
    fig_sm = px.scatter_matrix(
        sm_df,
        dimensions=sm_df.columns,
        title="Scatter Matrix",
        color_discrete_sequence=["#636EFA"]  # Adjust color if you like
    )
    fig_sm.update_layout(width=800, height=800)
    st.plotly_chart(fig_sm, use_container_width=True)

##################################################
# 7.3 Simple Time-Lag Correlation (Example)
##################################################
st.subheader("Time-Lag Correlation ⚠️ NEEDS NIMR Data to work")

st.markdown("""
Experiment with a simple lag analysis. For example, check how 
temperature or rainfall in previous weeks/months correlates with **current** 
Malaria/Dengue risk.
""")

time_lag = st.slider("Select Lag (days) to shift weather parameters", min_value=0, max_value=60, value=0, step=5)

# Example: Shift rainfall & temperature columns by the selected lag and see correlation with disease risk
df_lag = df.copy()

if data_choice == "Daily" and time_lag > 0:
    # Shift daily rainfall/temperature backward by 'time_lag' days
    df_lag = df_lag.sort_values("date")  # ensure sorted by date
    df_lag["temp_avg_lag"] = df_lag.groupby("location")["temp_avg"].shift(time_lag)
    df_lag["rain_lag"] = df_lag.groupby("location")["daily_rainfall_mm"].shift(time_lag)
    # If we want to see correlation with today's risk
    # we can drop rows with NaN in the lag columns
    df_lag.dropna(subset=["temp_avg_lag","rain_lag"], inplace=True)

elif data_choice == "Monthly" and time_lag > 0:
    # Shift monthly rainfall & temp by 'time_lag' (in days) => must approximate?
    # We'll interpret the slider as months if data is monthly. 
    # But that might not be precise if "time_lag" is in days. For simplicity, we convert days -> months ~ 30 days
    month_lag = time_lag // 30  # approximate conversion
    if month_lag > 0:
        df_lag = df_lag.sort_values("date")
        df_lag["temp_avg_lag"] = df_lag.groupby("location")["temp_avg"].shift(month_lag)
        df_lag["rain_lag"] = df_lag.groupby("location")["monthly_rainfall_mm"].shift(month_lag)
        df_lag.dropna(subset=["temp_avg_lag","rain_lag"], inplace=True)

# Now we compute correlation between risk_col and these lagged columns, if they exist
if "temp_avg_lag" in df_lag.columns and "rain_lag" in df_lag.columns:
    lag_corr_temp = df_lag[risk_col].corr(df_lag["temp_avg_lag"], method=corr_method)
    lag_corr_rain = df_lag[risk_col].corr(df_lag["rain_lag"], method=corr_method)

    st.write(f"**Correlation between {disease_choice} Risk and lagged Temperature**: {lag_corr_temp:.3f}")
    st.write(f"**Correlation between {disease_choice} Risk and lagged Rainfall**: {lag_corr_rain:.3f}")
else:
    st.write("No lag columns or lag is set to 0. Increase the lag to see results.")

##################################################
# 7.4 Outbreak Statistics
##################################################
st.subheader("Outbreak Statistics - ⚠️ NEEDS NIMR Data to work")

st.markdown("""
This section will show the **count** of outbreak periods based on selection
and some summary statistics, once we have overlayed NIMR Data with the Existing Weather Data 
""")

if disease_choice == "Malaria":
    outbreak_flag_col = "malaria_outbreak"
else:
    outbreak_flag_col = "dengue_outbreak"

# Summarize outbreak by location
if outbreak_flag_col in df.columns:
    outbreak_count_by_loc = df[df[outbreak_flag_col] == True].groupby("location").size().reset_index(name="outbreak_count")
    st.write("**Number of outbreak instances (in current selection) by location:**")
    st.dataframe(outbreak_count_by_loc)
else:
    st.write(f"No outbreak flag column found for {disease_choice}.")

# Show average temperature, rainfall, humidity during outbreak vs non-outbreak
if outbreak_flag_col in df.columns:
    with st.expander("Compare Weather Averages During Outbreak vs. Non-Outbreak"):
        outbreak_df = df[df[outbreak_flag_col] == True]
        non_outbreak_df = df[df[outbreak_flag_col] == False]
        
        if not outbreak_df.empty:
            avg_temp_outbreak = outbreak_df["temp_avg"].mean()
            avg_hum_outbreak = outbreak_df["humidity"].mean()
            if data_choice == "Daily":
                avg_rain_outbreak = outbreak_df["daily_rainfall_mm"].mean()
            else:
                avg_rain_outbreak = outbreak_df["monthly_rainfall_mm"].mean()
            
            avg_temp_non = non_outbreak_df["temp_avg"].mean()
            avg_hum_non = non_outbreak_df["humidity"].mean()
            if data_choice == "Daily":
                avg_rain_non = non_outbreak_df["daily_rainfall_mm"].mean()
            else:
                avg_rain_non = non_outbreak_df["monthly_rainfall_mm"].mean()

            st.write(f"**Outbreak Periods** ({disease_choice}):")
            st.write(f"- Avg Temperature: {avg_temp_outbreak:.2f} °C")
            st.write(f"- Avg Humidity: {avg_hum_outbreak:.2f}%")
            st.write(f"- Avg Rainfall: {avg_rain_outbreak:.2f} mm")

            st.write(f"**Non-Outbreak Periods** ({disease_choice}):")
            st.write(f"- Avg Temperature: {avg_temp_non:.2f} °C")
            st.write(f"- Avg Humidity: {avg_hum_non:.2f}%")
            st.write(f"- Avg Rainfall: {avg_rain_non:.2f} mm")
        else:
            st.write(f"No {disease_choice} outbreaks found in the current selection.")