File size: 1,347 Bytes
a40ce12 e6c4009 c827f71 e6c4009 c827f71 e6c4009 c827f71 a40ce12 c827f71 a40ce12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import os
import subprocess
import openai
import gradio as gr
openai.api_key = "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"
def transcribe(audio):
with open(audio, "rb") as audio_file:
transcript = openai.Audio.transcribe("whisper-1", audio_file)
return transcript["text"]
def generate_response(transcribed_text):
response = openai.Completion.create(
engine="text-davinci-003",
prompt=transcribed_text,
max_tokens=1024,
n=1,
stop=None,
temperature=0.5,
)
return response.choices[0].text
def inference(text):
output_file = "tts_output.wav"
cmd = ['tts', '--text', text, '--out_path', output_file]
subprocess.run(cmd, check=True)
return output_file
def process_audio_and_respond(audio):
text = transcribe(audio)
response_text = generate_response(text)
output_file = inference(response_text)
return output_file
demo = gr.Interface(
process_audio_and_respond,
gr.inputs.Audio(source="microphone", type="filepath", label="Speak your question"),
gr.outputs.Audio(type="filepath", label="Answer"),
title="AI Question Answering",
description="Ask any question and get an AI-generated answer as audio output.",
theme="compact",
layout="vertical",
allow_flagging=False,
live=True,
)
demo.launch() |