lyimo commited on
Commit
c534ba8
·
verified ·
1 Parent(s): f2521b1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -170
app.py CHANGED
@@ -1,173 +1,30 @@
1
- import uvicorn
2
- import base64
3
- import io
4
- from pathlib import Path
5
-
6
- # Fastai imports
7
  from fastai.vision.all import *
8
-
9
- # FastHTML imports
10
- from fasthtml.common import * # Imports common HTML tags, App, etc.
11
- from fasthtml.core import FastHTML # Base class if needed, but App is usually sufficient
12
- from fasthtml.components import FileInput # Specific component for file input
13
- from fastcore.utils import * # For Upload class
14
-
15
- # --- Configuration ---
16
- MODEL_PATH = Path(__file__).parent / 'model.pkl'
17
- defaults.device = torch.device('cpu')
18
-
19
- # --- Load Fastai Learner ---
20
- try:
21
- print(f"Attempting to load model from: {MODEL_PATH.resolve()}")
22
- if not MODEL_PATH.is_file():
23
- raise FileNotFoundError(f"Model file not found at calculated path: {MODEL_PATH.resolve()}")
24
- learn = load_learner(MODEL_PATH)
25
- print("Model loaded successfully.")
26
- # Get class names (vocab) from the learner's dataloaders
27
- CLASS_NAMES = learn.dls.vocab
28
- print(f"Model Classes: {CLASS_NAMES}")
29
- except FileNotFoundError as e:
30
- print(f"Error: {e}")
31
- print("Please make sure 'model.pkl' is in the same directory as app.py.")
32
- raise SystemExit(f"CRITICAL ERROR: Model file not found at {MODEL_PATH}. Application cannot start.")
33
- except Exception as e:
34
- print(f"CRITICAL ERROR: An unexpected error occurred loading the model: {e}")
35
- raise SystemExit(f"CRITICAL ERROR: Failed to load model. Application cannot start. Error: {e}")
36
-
37
- # --- FastHTML App Setup ---
38
- app = FastHTML()
39
- rt = app.route # Shortcut for the route decorator
40
-
41
- # --- Helper Function for Prediction ---
42
- def predict_image(img_bytes: bytes):
43
- """Takes image bytes, predicts using the fastai model."""
44
- if not img_bytes:
45
- return "Error: Image data is empty", 0.0
46
- try:
47
- # Create PILImage from bytes
48
- img = PILImage.create(img_bytes)
49
- # Get prediction from the learner
50
- pred_class, pred_idx, probs = learn.predict(img)
51
- # Get the confidence score for the predicted class
52
- confidence = probs[pred_idx].item()
53
- return pred_class, confidence
54
- except Exception as e:
55
- print(f"Error during prediction: {e}")
56
- return f"Prediction Error: Could not process image ({e})", 0.0
57
-
58
- # --- Define Routes ---
59
- @rt("/")
60
- async def get(request):
61
- """Serves the main page with the upload form."""
62
- return Titled("Fastai Image Classifier",
63
- Main(
64
- H1("Upload an Image for Classification"),
65
- # --- Form for uploading the image ---
66
- Form(
67
- # Positional argument: Div that contains the file input
68
- Div(
69
- FileInput(name="file", id="fileInput", cls="form-control", required=True, accept="image/*"),
70
- cls="mb-3"
71
- ),
72
- # Positional argument: Submit button
73
- Button("Classify Image", type="submit", cls="btn btn-primary"),
74
- # Keyword arguments: Form attributes
75
- hx_post="/predict",
76
- hx_target="#results",
77
- hx_swap="innerHTML",
78
- hx_encoding="multipart/form-data",
79
- hx_indicator="#loading-spinner",
80
- id="upload-form"
81
- ),
82
- # --- Loading Indicator ---
83
- Div(
84
- Span("Loading...", cls="visually-hidden"),
85
- id="loading-spinner", cls="htmx-indicator spinner-border mt-3",
86
- role="status", style="display: none;"
87
- ),
88
- # --- Results Area ---
89
- Div(
90
- id="results", cls="mt-4"
91
- ),
92
- cls="container mt-4"
93
- )
94
- )
95
-
96
- @rt("/predict", methods=["POST"])
97
- async def post(request, file: Upload):
98
- """Handles image upload, performs prediction, and returns results as an HTML fragment."""
99
- if not file or not file.filename:
100
- return Div(
101
- P("No file uploaded. Please select an image file.", cls="alert alert-warning mt-3"),
102
- id="results"
103
- )
104
-
105
- allowed_extensions = {'.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp'}
106
- file_ext = Path(file.filename).suffix.lower()
107
- if file_ext not in allowed_extensions:
108
- return Div(
109
- P(f"Invalid file type: '{file_ext}'. Please upload an image ({', '.join(allowed_extensions)}).", cls="alert alert-danger mt-3"),
110
- id="results"
111
- )
112
-
113
- print(f"Received file: {file.filename}, Content-Type: {file.content_type}, Size: {file.size}")
114
-
115
- try:
116
- img_bytes = await file.read() # Read the file content asynchronously
117
- if not img_bytes:
118
- return Div(
119
- P("Uploaded file appears to be empty.", cls="alert alert-warning mt-3"),
120
- id="results"
121
- )
122
- except Exception as e:
123
- print(f"Error reading uploaded file: {e}")
124
- return Div(
125
- P(f"Error reading uploaded file: {e}", cls="alert alert-danger mt-3"),
126
- id="results"
127
- )
128
-
129
- # --- Perform Prediction ---
130
- prediction, confidence = predict_image(img_bytes)
131
-
132
- # Encode image to base64 for preview (only if prediction was successful)
133
- img_src = None
134
- if "Error" not in str(prediction):
135
- try:
136
- img_base64 = base64.b64encode(img_bytes).decode('utf-8')
137
- content_type = file.content_type if (file.content_type and file.content_type.startswith('image/')) else 'image/jpeg'
138
- img_src = f"data:{content_type};base64,{img_base64}"
139
- except Exception as e:
140
- print(f"Error encoding image to base64: {e}")
141
-
142
- result_cls = "alert alert-danger" if "Error" in str(prediction) else "alert alert-success"
143
-
144
- return Div(
145
- # Display image preview if available
146
- (Img(src=img_src, alt="Uploaded Image Preview",
147
- style="max-width: 300px; max-height: 300px; margin-top: 15px; margin-bottom: 10px; display: block; border: 1px solid #ddd;")
148
- if img_src else P("Preview not available.")),
149
- # Display prediction results or error message
150
- Div(
151
- P(Strong("Prediction: "), f"{prediction}"),
152
- (P(Strong("Confidence: "), f"{confidence:.4f}") if "Error" not in str(prediction) else None),
153
- cls=f"{result_cls} mt-3",
154
- role="alert"
155
- ),
156
- id="results",
157
- hx_swap_oob="true"
158
- )
159
-
160
- # --- Add CSS/JS Headers ---
161
- app.sheets.append(
162
- Link(href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css", rel="stylesheet",
163
- integrity="sha384-T3c6CoIi6uLrA9TneNEoa7RxnatzjcDSCmG1MXxSR1GAsXEV/Dwwykc2MPK8M2HN", crossorigin="anonymous")
164
- )
165
- app.hdrs.append(
166
- Script(src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js",
167
- integrity="sha384-C6RzsynM9kWDrMNeT87bh95OGNyZPhcTNXj1NW7RuBCsyN/o0jlpcV8Qyq46cDfL", crossorigin="anonymous")
168
  )
169
 
170
- # --- Run the App (for local development) ---
171
- if __name__ == "__main__":
172
- print("Starting Uvicorn server for local development...")
173
- uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
 
 
1
+ import gradio as gr
 
 
 
 
 
2
  from fastai.vision.all import *
3
+ import skimage
4
+
5
+
6
+ learn = load_learner('model.pkl')
7
+ #from huggingface_hub import from_pretrained_fastai
8
+ #learn = from_pretrained_fastai("devdatanalytics/commonbean")
9
+
10
+ labels = learn.dls.vocab
11
+ def predict(img):
12
+ img = PILImage.create(img)
13
+ pred,pred_idx,probs = learn.predict(img)
14
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
15
+
16
+ #title = "Common beans diseases classfier"
17
+ #description = "An app for Common beans diseases Classisfication"
18
+ #article="<p style='text-align: center'>The app identifies and classifies common beans diseases: Anthracnose and Bean rust.</p>"
19
+ # Create the Gradio interface
20
+ interface = gr.Interface(
21
+ fn=predict,
22
+ inputs=gr.Image(),
23
+ outputs=gr.Label(num_top_classes=3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  )
25
 
26
+ # Enable the queue to handle POST requests
27
+ interface.queue(api_open=True)
28
+
29
+ # Launch the interface
30
+ interface.launch()