Spaces:
Running
Running
File size: 6,040 Bytes
bdb2f2b 0163d98 bdb2f2b eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c 0163d98 1fd4e9c 0163d98 1fd4e9c 0163d98 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c 0163d98 1fd4e9c 0163d98 1fd4e9c 0163d98 1fd4e9c 0163d98 eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 0163d98 1fd4e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
title: DeepSound-V1
colorFrom: blue
colorTo: indigo
sdk: gradio
app_file: app.py
pinned: false
---
<!-- # DeepSound-V1
Official code for DeepSound-V1 -->
<div align="center">
<p align="center">
<h2>DeepSound-V1</h2>
<!-- <a href="https://arxiv.org/abs/2412.15322">Paper</a> | <a href="https://hkchengrex.github.io/MMAudio">Webpage</a> | <a href="https://huggingface.co/hkchengrex/MMAudio/tree/main">Models</a> | <a href="https://huggingface.co/spaces/hkchengrex/MMAudio"> Huggingface Demo</a> | <a href="https://colab.research.google.com/drive/1TAaXCY2-kPk4xE4PwKB3EqFbSnkUuzZ8?usp=sharing">Colab Demo</a> | <a href="https://replicate.com/zsxkib/mmaudio">Replicate Demo</a> -->
<a href="https://github.com/lym0302/DeepSound-V1">Paper</a> | <a href="https://github.com/lym0302/DeepSound-V1">Webpage</a> | <a href="https://github.com/lym0302/DeepSound-V1"> Huggingface Demo</a>
</p>
</div>
## [DeepSound-V1: Start to Think Step-by-Step in the Audio Generation from Videos](https://github.com/lym0302/DeepSound-V1)
<!-- [Ho Kei Cheng](https://hkchengrex.github.io/), [Masato Ishii](https://scholar.google.co.jp/citations?user=RRIO1CcAAAAJ), [Akio Hayakawa](https://scholar.google.com/citations?user=sXAjHFIAAAAJ), [Takashi Shibuya](https://scholar.google.com/citations?user=XCRO260AAAAJ), [Alexander Schwing](https://www.alexander-schwing.de/), [Yuki Mitsufuji](https://www.yukimitsufuji.com/) -->
<!-- University of Illinois Urbana-Champaign, Sony AI, and Sony Group Corporation -->
<!-- ICCV 2025 -->
## Highlight
DeepSound-V1 is a framework enabling audio generation from videos towards initial step-by-step thinking without extra annotations based on the internal chain-of-thought (CoT) of Multi-modal large language model(MLLM).
<!-- ## Results
(All audio from our algorithm MMAudio)
Videos from Sora:
https://github.com/user-attachments/assets/82afd192-0cee-48a1-86ca-bd39b8c8f330
Videos from Veo 2:
https://github.com/user-attachments/assets/8a11419e-fee2-46e0-9e67-dfb03c48d00e
Videos from MovieGen/Hunyuan Video/VGGSound:
https://github.com/user-attachments/assets/29230d4e-21c1-4cf8-a221-c28f2af6d0ca
For more results, visit https://hkchengrex.com/MMAudio/video_main.html. -->
## Installation
```bash
conda create -n deepsound-v1 python=3.10.16 -y
conda activate deepsound-v1
pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu120
pip install flash-attn==2.5.8 --no-build-isolation
pip install -e .
pip install -r reqirments.txt
```
<!-- We have only tested this on Ubuntu.
### Prerequisites
We recommend using a [miniforge](https://github.com/conda-forge/miniforge) environment.
- Python 3.9+
- PyTorch **2.5.1+** and corresponding torchvision/torchaudio (pick your CUDA version https://pytorch.org/, pip install recommended)
<!-- - ffmpeg<7 ([this is required by torchaudio](https://pytorch.org/audio/master/installation.html#optional-dependencies), you can install it in a miniforge environment with `conda install -c conda-forge 'ffmpeg<7'`) -->
<!-- **1. Install prerequisite if not yet met:**
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 --upgrade
```
(Or any other CUDA versions that your GPUs/driver support) -->
<!-- ```
conda install -c conda-forge 'ffmpeg<7
```
(Optional, if you use miniforge and don't already have the appropriate ffmpeg) -->
<!-- **2. Clone our repository:**
```bash
git clone https://github.com/lym0302/DeepSound-V1.git
```
**3. Install with pip (install pytorch first before attempting this!):**
```bash
cd DeepSound-V1
pip install -e .
```
(If you encounter the File "setup.py" not found error, upgrade your pip with pip install --upgrade pip) -->
<!-- The models will be downloaded automatically when you run the demo script. MD5 checksums are provided in `mmaudio/utils/download_utils.py`.
The models are also available at https://huggingface.co/hkchengrex/MMAudio/tree/main
See [MODELS.md](docs/MODELS.md) for more details. -->
## Demo
### Pretrained models
See [MODELS.md](docs/MODELS.md).
### Command-line interface
With `demo.py`
```bash
python demo.py -i <video_path>
```
All training parameters are [here]().
<!-- The output (audio in `.wav` format, and video in `.mp4` format) will be saved in `./output`.
See the file for more options.
Simply omit the `--video` option for text-to-audio synthesis.
The default output (and training) duration is 8 seconds. Longer/shorter durations could also work, but a large deviation from the training duration may result in a lower quality. -->
<!-- ### Gradio interface
Supports video-to-audio and text-to-audio synthesis.
You can also try experimental image-to-audio synthesis which duplicates the input image to a video for processing. This might be interesting to some but it is not something MMAudio has been trained for.
Use [port forwarding](https://unix.stackexchange.com/questions/115897/whats-ssh-port-forwarding-and-whats-the-difference-between-ssh-local-and-remot) (e.g., `ssh -L 7860:localhost:7860 server`) if necessary. The default port is `7860` which you can specify with `--port`.
```bash
python gradio_demo.py
``` -->
## Evaluation
Refer [av-benchmark](https://github.com/hkchengrex/av-benchmark) for benchmarking results.
See [EVAL.md](docs/EVAL.md).
## Citation
<!-- ```bibtex
@inproceedings{cheng2025taming,
title={Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis},
author={Cheng, Ho Kei and Ishii, Masato and Hayakawa, Akio and Shibuya, Takashi and Schwing, Alexander and Mitsufuji, Yuki},
booktitle={CVPR},
year={2025}
}
``` -->
## Relevant Repositories
- [av-benchmark](https://github.com/hkchengrex/av-benchmark) for benchmarking results.
## Acknowledgement
Many thanks to:
- [VideoLLaMA2](https://github.com/DAMO-NLP-SG/VideoLLaMA2)
- [MMAudio](https://github.com/hkchengrex/MMAudio)
- [FoleyCrafter](https://github.com/open-mmlab/FoleyCrafter)
- [BS-RoFormer](https://github.com/ZFTurbo/Music-Source-Separation-Training)
|