Spaces:
Running
Running
File size: 5,989 Bytes
0163d98 1fd4e9c 430ec0a bfceb04 430ec0a bfceb04 430ec0a eedfa8e 1fd4e9c bfceb04 3f6c072 bfceb04 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 0163d98 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c eedfa8e 1fd4e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import os
import sys
import time
import gradio as gr
import subprocess
from pathlib import Path
import requests
from moviepy.editor import AudioFileClip, VideoFileClip
project_root = os.path.dirname(os.path.abspath(__file__))
mmaudio_path = os.path.join(project_root, 'third_party', 'MMAudio')
sys.path.append(mmaudio_path)
from pipeline.pipeline import Pipeline
from third_party.MMAudio.mmaudio.eval_utils import setup_eval_logging
# download model
# os.makedirs("pretrained/mllm", exist_ok=True)
from huggingface_hub import snapshot_download
repo_local_path = snapshot_download(repo_id="lym0302/VideoLLaMA2.1-7B-AV-CoT")
remove_vo_model_dir = "pretrained/remove_vo/checkpoints"
os.makedirs(remove_vo_model_dir, exist_ok=True)
urls = ["https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/model_bs_roformer_ep_317_sdr_12.9755.ckpt",
"https://raw.githubusercontent.com/ZFTurbo/Music-Source-Separation-Training/main/configs/viperx/model_bs_roformer_ep_317_sdr_12.9755.yaml"]
for url in urls:
file_name = url.split("/")[-1] # Extract file name from URL
file_path = os.path.join(remove_vo_model_dir, file_name)
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192): # Use a chunk size of 8 KB
f.write(chunk)
print(f"File downloaded successfully and saved to {file_path}")
else:
print(f"Failed to download the file. Status code: {response.status_code}")
os.makedirs("pretrained/v2a/mmaudio", exist_ok=True)
setup_eval_logging()
pipeline = Pipeline(
step0_model_dir=repo_local_path,
step1_mode='mmaudio_small_44k',
step2_model_dir=repo_local_path,
step2_mode='cot',
step3_mode='bs_roformer',
)
output_dir = "output_gradio"
os.makedirs(output_dir, exist_ok=True)
skip_final_video = False
def video_to_audio(
video_input: gr.Video,
prompt: str='',
negative_prompt: str='',
mode: str='s4',
postp_mode: str='neg',
duration: float=10,
seed: int=42,):
log_messages = [] # 用于存储日志
def log_info(msg):
log_messages.append(msg)
return "\n".join(log_messages) # 每次返回完整的日志历史
if not video_input:
yield None, log_info("Error: No video input provided.")
return
yield None, log_info("Generate high-quality audio from video step-by-step...") # 初始化日志
st_infer = time.time()
video_input = str(video_input)
for step_results in pipeline.run_for_gradio(
video_input=video_input,
output_dir=output_dir,
mode=mode,
postp_mode=postp_mode,
prompt=prompt,
negative_prompt=negative_prompt,
duration=duration,
seed=seed
):
if step_results['log'] == 'Finish step-by-step v2a.':
break
else:
yield None, log_info(step_results['log'])
temp_final_audio_path = step_results["temp_final_audio_path"]
temp_final_video_path = step_results["temp_final_video_path"]
video_name_stem = Path(video_input).stem
final_audio_path = str(Path(output_dir) / f'{video_name_stem}.wav')
final_video_path = str(Path(output_dir) / f'{video_name_stem}.mp4')
if temp_final_audio_path is not None:
subprocess.run(['cp', str(temp_final_audio_path), final_audio_path], check=True)
step_results["final_audio_path"] = final_audio_path
if skip_final_video:
step_results["final_video_path"] = None
else:
if temp_final_video_path is not None:
subprocess.run(['cp', str(temp_final_video_path), final_video_path], check=True)
else:
audio = AudioFileClip(final_audio_path)
video = VideoFileClip(video_input)
duration = min(audio.duration, video.duration)
audio = audio.subclip(0, duration)
video.audio = audio
video = video.subclip(0, duration)
video.write_videofile(final_video_path)
step_results["final_video_path"] = final_video_path
et_infer = time.time()
print(f"Inference time: {et_infer - st_infer:.2f} s.")
print("step_results: ", step_results)
yield (final_video_path if os.path.exists(final_video_path) else None), log_info(step_results['log'])
video_to_audio_tab = gr.Interface(
fn=video_to_audio,
# Project page: <a href="https://hkchengrex.com/MMAudio/">https://hkchengrex.com/MMAudio/</a><br>
description="""
Code: <a href="https://github.com/lym0302/DeepSound-V1">https://github.com/lym0302/DeepSound-V1</a><br>
NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side).
Doing so does not improve results.
This is a step-by-step v2a process and may take a long time.
If Post Processing is set to 'rm', the generated video may be None.
""",
inputs=[
gr.Video(),
gr.Text(label='Prompt'),
gr.Text(label='Negative prompt', value=''),
gr.Radio(["s3", "s4"], label="Mode", value="s4"),
gr.Radio(["rm", "rep", "neg"], label="Post Processing", value="neg"),
gr.Number(label='Duration (sec)', value=10, minimum=1),
gr.Number(label='Seed (42: random)', value=42, precision=0, minimum=-1),
],
outputs=[gr.Video(label="Generated Video"), gr.Text(label="Logs"),],
cache_examples=False,
title='DeepSound-V1 — Video-to-Audio Synthesis',
)
if __name__ == "__main__":
gr.TabbedInterface([video_to_audio_tab],
['Video-to-Audio']).launch(allowed_paths=[output_dir])
# if __name__ == "__main__":
# port = 8000
# gr.TabbedInterface([video_to_audio_tab, ],
# ['Video-to-Audio', ]).launch(
# server_port=port, allowed_paths=[output_dir])
|