File size: 7,205 Bytes
1fd4e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import logging
import random

import numpy as np
import torch
from omegaconf import DictConfig
from torch.utils.data import DataLoader, Dataset
from torch.utils.data.dataloader import default_collate
from torch.utils.data.distributed import DistributedSampler

from mmaudio.data.eval.audiocaps import AudioCapsData
from mmaudio.data.eval.video_dataset import MovieGen, VGGSound
from mmaudio.data.extracted_audio import ExtractedAudio
from mmaudio.data.extracted_vgg import ExtractedVGG
from mmaudio.data.mm_dataset import MultiModalDataset
from mmaudio.utils.dist_utils import local_rank

log = logging.getLogger()


# Re-seed randomness every time we start a worker
def worker_init_fn(worker_id: int):
    worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000
    np.random.seed(worker_seed)
    random.seed(worker_seed)
    log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}')


def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
    dataset = ExtractedVGG(tsv_path=data_cfg.tsv,
                           data_dim=cfg.data_dim,
                           premade_mmap_dir=data_cfg.memmap_dir)

    return dataset


def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset:
    dataset = ExtractedAudio(tsv_path=data_cfg.tsv,
                             data_dim=cfg.data_dim,
                             premade_mmap_dir=data_cfg.memmap_dir)

    return dataset


def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]:
    if cfg.mini_train:
        vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)
        audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
        dataset = MultiModalDataset([vgg], [audiocaps])
    if cfg.example_train:
        video = load_vgg_data(cfg, cfg.data.Example_video)
        audio = load_audio_data(cfg, cfg.data.Example_audio)
        dataset = MultiModalDataset([video], [audio])
    else:
        # load the largest one first
        freesound = load_audio_data(cfg, cfg.data.FreeSound)
        vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG)
        audiocaps = load_audio_data(cfg, cfg.data.AudioCaps)
        audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL)
        bbcsound = load_audio_data(cfg, cfg.data.BBCSound)
        clotho = load_audio_data(cfg, cfg.data.Clotho)
        dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate,
                                    [audiocaps, audioset_sl, bbcsound, freesound, clotho])

    batch_size = cfg.batch_size
    num_workers = cfg.num_workers
    pin_memory = cfg.pin_memory
    sampler, loader = construct_loader(dataset,
                                       batch_size,
                                       num_workers,
                                       shuffle=True,
                                       drop_last=True,
                                       pin_memory=pin_memory)

    return dataset, sampler, loader


def setup_test_datasets(cfg):
    dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test)

    batch_size = cfg.batch_size
    num_workers = cfg.num_workers
    pin_memory = cfg.pin_memory
    sampler, loader = construct_loader(dataset,
                                       batch_size,
                                       num_workers,
                                       shuffle=False,
                                       drop_last=False,
                                       pin_memory=pin_memory)

    return dataset, sampler, loader


def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]:
    if cfg.example_train:
        dataset = load_vgg_data(cfg, cfg.data.Example_video)
    else:
        dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val)

    val_batch_size = cfg.batch_size
    val_eval_batch_size = cfg.eval_batch_size
    num_workers = cfg.num_workers
    pin_memory = cfg.pin_memory
    _, val_loader = construct_loader(dataset,
                                     val_batch_size,
                                     num_workers,
                                     shuffle=False,
                                     drop_last=False,
                                     pin_memory=pin_memory)
    _, eval_loader = construct_loader(dataset,
                                      val_eval_batch_size,
                                      num_workers,
                                      shuffle=False,
                                      drop_last=False,
                                      pin_memory=pin_memory)

    return dataset, val_loader, eval_loader


def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]:
    if dataset_name.startswith('audiocaps_full'):
        dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path,
                                cfg.eval_data.AudioCaps_full.csv_path)
    elif dataset_name.startswith('audiocaps'):
        dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path,
                                cfg.eval_data.AudioCaps.csv_path)
    elif dataset_name.startswith('moviegen'):
        dataset = MovieGen(cfg.eval_data.MovieGen.video_path,
                           cfg.eval_data.MovieGen.jsonl_path,
                           duration_sec=cfg.duration_s)
    elif dataset_name.startswith('vggsound'):
        dataset = VGGSound(cfg.eval_data.VGGSound.video_path,
                           cfg.eval_data.VGGSound.csv_path,
                           duration_sec=cfg.duration_s)
    else:
        raise ValueError(f'Invalid dataset name: {dataset_name}')

    batch_size = cfg.batch_size
    num_workers = cfg.num_workers
    pin_memory = cfg.pin_memory
    _, loader = construct_loader(dataset,
                                 batch_size,
                                 num_workers,
                                 shuffle=False,
                                 drop_last=False,
                                 pin_memory=pin_memory,
                                 error_avoidance=True)
    return dataset, loader


def error_avoidance_collate(batch):
    batch = list(filter(lambda x: x is not None, batch))
    return default_collate(batch)


def construct_loader(dataset: Dataset,
                     batch_size: int,
                     num_workers: int,
                     *,
                     shuffle: bool = True,
                     drop_last: bool = True,
                     pin_memory: bool = False,
                     error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]:
    train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle)
    train_loader = DataLoader(dataset,
                              batch_size,
                              sampler=train_sampler,
                              num_workers=num_workers,
                              worker_init_fn=worker_init_fn,
                              drop_last=drop_last,
                              persistent_workers=num_workers > 0,
                              pin_memory=pin_memory,
                              collate_fn=error_avoidance_collate if error_avoidance else None)
    return train_sampler, train_loader