Spaces:
Running
Running
File size: 7,373 Bytes
1fd4e9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
"""
Dumps things to tensorboard and console
"""
import datetime
import logging
import math
import os
from collections import defaultdict
from pathlib import Path
from typing import Optional, Union
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchaudio
from PIL import Image
from pytz import timezone
from torch.utils.tensorboard import SummaryWriter
from mmaudio.utils.email_utils import EmailSender
from mmaudio.utils.time_estimator import PartialTimeEstimator, TimeEstimator
from mmaudio.utils.timezone import my_timezone
def tensor_to_numpy(image: torch.Tensor):
image_np = (image.numpy() * 255).astype('uint8')
return image_np
def detach_to_cpu(x: torch.Tensor):
return x.detach().cpu()
def fix_width_trunc(x: float):
return ('{:.9s}'.format('{:0.9f}'.format(x)))
def plot_spectrogram(spectrogram: np.ndarray, title=None, ylabel="freq_bin", ax=None):
if ax is None:
_, ax = plt.subplots(1, 1)
if title is not None:
ax.set_title(title)
ax.set_ylabel(ylabel)
ax.imshow(spectrogram, origin="lower", aspect="auto", interpolation="nearest")
class TensorboardLogger:
def __init__(self,
exp_id: str,
run_dir: Union[Path, str],
py_logger: logging.Logger,
*,
is_rank0: bool = False,
enable_email: bool = False):
self.exp_id = exp_id
self.run_dir = Path(run_dir)
self.py_log = py_logger
self.email_sender = EmailSender(exp_id, enable=(is_rank0 and enable_email))
if is_rank0:
self.tb_log = SummaryWriter(run_dir)
else:
self.tb_log = None
# Get current git info for logging
try:
import git
repo = git.Repo(".")
git_info = str(repo.active_branch) + ' ' + str(repo.head.commit.hexsha)
except (ImportError, RuntimeError, TypeError):
print('Failed to fetch git info. Defaulting to None')
git_info = 'None'
self.log_string('git', git_info)
# log the SLURM job id if available
job_id = os.environ.get('SLURM_JOB_ID', None)
if job_id is not None:
self.log_string('slurm_job_id', job_id)
self.email_sender.send(f'Job {job_id} started', f'Job started {run_dir}')
# used when logging metrics
self.batch_timer: TimeEstimator = None
self.data_timer: PartialTimeEstimator = None
self.nan_count = defaultdict(int)
def log_scalar(self, tag: str, x: float, it: int):
if self.tb_log is None:
return
if math.isnan(x) and 'grad_norm' not in tag:
self.nan_count[tag] += 1
if self.nan_count[tag] == 10:
self.email_sender.send(
f'Nan detected in {tag} @ {self.run_dir}',
f'Nan detected in {tag} at iteration {it}; run_dir: {self.run_dir}')
else:
self.nan_count[tag] = 0
self.tb_log.add_scalar(tag, x, it)
def log_metrics(self,
prefix: str,
metrics: dict[str, float],
it: int,
ignore_timer: bool = False):
msg = f'{self.exp_id}-{prefix} - it {it:6d}: '
metrics_msg = ''
for k, v in sorted(metrics.items()):
self.log_scalar(f'{prefix}/{k}', v, it)
metrics_msg += f'{k: >10}:{v:.7f},\t'
if self.batch_timer is not None and not ignore_timer:
self.batch_timer.update()
avg_time = self.batch_timer.get_and_reset_avg_time()
data_time = self.data_timer.get_and_reset_avg_time()
# add time to tensorboard
self.log_scalar(f'{prefix}/avg_time', avg_time, it)
self.log_scalar(f'{prefix}/data_time', data_time, it)
est = self.batch_timer.get_est_remaining(it)
est = datetime.timedelta(seconds=est)
if est.days > 0:
remaining_str = f'{est.days}d {est.seconds // 3600}h'
else:
remaining_str = f'{est.seconds // 3600}h {(est.seconds%3600) // 60}m'
eta = datetime.datetime.now(timezone(my_timezone)) + est
eta_str = eta.strftime('%Y-%m-%d %H:%M:%S %Z%z')
time_msg = f'avg_time:{avg_time:.3f},data:{data_time:.3f},remaining:{remaining_str},eta:{eta_str},\t'
msg = f'{msg} {time_msg}'
msg = f'{msg} {metrics_msg}'
self.py_log.info(msg)
def log_histogram(self, tag: str, hist: torch.Tensor, it: int):
if self.tb_log is None:
return
# hist should be a 1D tensor
hist = hist.cpu().numpy()
fig, ax = plt.subplots()
x_range = np.linspace(0, 1, len(hist))
ax.bar(x_range, hist, width=1 / (len(hist) - 1))
ax.set_xticks(x_range)
ax.set_xticklabels(x_range)
plt.tight_layout()
self.tb_log.add_figure(tag, fig, it)
plt.close()
def log_image(self, prefix: str, tag: str, image: np.ndarray, it: int):
image_dir = self.run_dir / f'{prefix}_images'
image_dir.mkdir(exist_ok=True, parents=True)
image = Image.fromarray(image)
image.save(image_dir / f'{it:09d}_{tag}.png')
def log_audio(self,
prefix: str,
tag: str,
waveform: torch.Tensor,
it: Optional[int] = None,
*,
subdir: Optional[Path] = None,
sample_rate: int = 16000) -> Path:
if subdir is None:
audio_dir = self.run_dir / prefix
else:
audio_dir = self.run_dir / subdir / prefix
audio_dir.mkdir(exist_ok=True, parents=True)
if it is None:
name = f'{tag}.flac'
else:
name = f'{it:09d}_{tag}.flac'
torchaudio.save(audio_dir / name,
waveform.cpu().float(),
sample_rate=sample_rate,
channels_first=True)
return Path(audio_dir)
def log_spectrogram(
self,
prefix: str,
tag: str,
spec: torch.Tensor,
it: Optional[int],
*,
subdir: Optional[Path] = None,
):
if subdir is None:
spec_dir = self.run_dir / prefix
else:
spec_dir = self.run_dir / subdir / prefix
spec_dir.mkdir(exist_ok=True, parents=True)
if it is None:
name = f'{tag}.png'
else:
name = f'{it:09d}_{tag}.png'
plot_spectrogram(spec.cpu().float())
plt.tight_layout()
plt.savefig(spec_dir / name)
plt.close()
def log_string(self, tag: str, x: str):
self.py_log.info(f'{tag} - {x}')
if self.tb_log is None:
return
self.tb_log.add_text(tag, x)
def debug(self, x):
self.py_log.debug(x)
def info(self, x):
self.py_log.info(x)
def warning(self, x):
self.py_log.warning(x)
def error(self, x):
self.py_log.error(x)
def critical(self, x):
self.py_log.critical(x)
self.email_sender.send(f'Error occurred in {self.run_dir}', x)
def complete(self):
self.email_sender.send(f'Job completed in {self.run_dir}', 'Job completed')
|