File size: 7,200 Bytes
1fd4e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#coding=utf-8
import logging
import os
from pathlib import Path
import torch
from huggingface_hub import snapshot_download
import os
from pathlib import Path

import soundfile as sf
import torch
import torchvision
from huggingface_hub import snapshot_download
from moviepy.editor import AudioFileClip, VideoFileClip
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection

from third_party.FoleyCrafter.foleycrafter.models.onset import torch_utils
from third_party.FoleyCrafter.foleycrafter.models.time_detector.model import VideoOnsetNet
from third_party.FoleyCrafter.foleycrafter.pipelines.auffusion_pipeline import Generator, denormalize_spectrogram
from third_party.FoleyCrafter.foleycrafter.utils.util import build_foleycrafter, read_frames_with_moviepy


vision_transform_list = [
    torchvision.transforms.Resize((128, 128)),
    torchvision.transforms.CenterCrop((112, 112)),
    torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
video_transform = torchvision.transforms.Compose(vision_transform_list)

model_base_dir = "pretrained/v2a/foleycrafter"

class V2A_FoleyCrafter:
    def __init__(self, 
                pretrained_model_name_or_path: str=f"{model_base_dir}/checkpoints/auffusion",
                ckpt: str=f"{model_base_dir}/checkpoints",):
        self.log = logging.getLogger(self.__class__.__name__)
        self.log.setLevel(logging.INFO)
        self.log.info(f"The V2A model uses FoleyCrafter, init...")

        self.device = 'cpu'
        if torch.cuda.is_available():
            self.device = 'cuda'
        elif torch.backends.mps.is_available():
            self.device = 'mps'
        else:
            self.log.warning('CUDA/MPS are not available, running on CPU')
        
        # download ckpt
        if not os.path.isdir(pretrained_model_name_or_path):
            pretrained_model_name_or_path = snapshot_download(pretrained_model_name_or_path)


        # ckpt path
        temporal_ckpt_path = os.path.join(ckpt, "temporal_adapter.ckpt")

        # load vocoder
        self.vocoder = Generator.from_pretrained(ckpt, subfolder="vocoder").to(self.device)

        # load time_detector
        time_detector_ckpt = os.path.join(ckpt, "timestamp_detector.pth.tar")
        self.time_detector = VideoOnsetNet(False)
        self.time_detector, _ = torch_utils.load_model(time_detector_ckpt, self.time_detector, device=self.device, strict=True)

        # load adapters
        self.pipe = build_foleycrafter().to(self.device)
        ckpt = torch.load(temporal_ckpt_path)

        # load temporal adapter
        if "state_dict" in ckpt.keys():
            ckpt = ckpt["state_dict"]
        load_gligen_ckpt = {}
        for key, value in ckpt.items():
            if key.startswith("module."):
                load_gligen_ckpt[key[len("module.") :]] = value
            else:
                load_gligen_ckpt[key] = value
        m, u = self.pipe.controlnet.load_state_dict(load_gligen_ckpt, strict=False)
        print(f"### Control Net missing keys: {len(m)}; \n### unexpected keys: {len(u)};")

        # load semantic adapter
        self.pipe.load_ip_adapter(
            os.path.join(ckpt, "semantic"), subfolder="", weight_name="semantic_adapter.bin", image_encoder_folder=None
        )
        # ip_adapter_weight = semantic_scale
        # self.pipe.set_ip_adapter_scale(ip_adapter_weight)

        self.generator = torch.Generator(device=self.device)
        # self.generator.manual_seed(seed)
        self.image_processor = CLIPImageProcessor()
        self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "h94/IP-Adapter", subfolder="models/image_encoder"
        ).to(self.device)

    @torch.no_grad()
    def generate_audio(self, 
                       video_path,
                       output_dir,
                       prompt: str='', 
                       negative_prompt: str='',
                       seed: int=42,
                       temporal_scale: float=0.2,
                       semantic_scale: float=1.0,
                       is_postp=False,):
        
        self.pipe.set_ip_adapter_scale(semantic_scale)
        self.generator.manual_seed(seed)
        
        video_path = Path(video_path).expanduser()
        output_dir = Path(output_dir).expanduser()
        self.log.info(f"Loading video: {video_path}")
        output_dir.mkdir(parents=True, exist_ok=True)

        frames, duration = read_frames_with_moviepy(video_path, max_frame_nums=150)
        time_frames = torch.FloatTensor(frames).permute(0, 3, 1, 2)
        time_frames = video_transform(time_frames)
        time_frames = {"frames": time_frames.unsqueeze(0).permute(0, 2, 1, 3, 4)}
        preds = self.time_detector(time_frames)
        preds = torch.sigmoid(preds)
        time_condition = [
            -1 if preds[0][int(i / (1024 / 10 * duration) * 150)] < 0.5 else 1
            for i in range(int(1024 / 10 * duration))
        ]
        time_condition = time_condition + [-1] * (1024 - len(time_condition))
        # w -> b c h w
        time_condition = (
            torch.FloatTensor(time_condition)
            .unsqueeze(0)
            .unsqueeze(0)
            .unsqueeze(0)
            .repeat(1, 1, 256, 1)
            .to("cuda")
        )
        images = self.image_processor(images=frames, return_tensors="pt").to("cuda")
        image_embeddings = self.image_encoder(**images).image_embeds
        image_embeddings = torch.mean(image_embeddings, dim=0, keepdim=True).unsqueeze(0).unsqueeze(0)
        neg_image_embeddings = torch.zeros_like(image_embeddings)
        image_embeddings = torch.cat([neg_image_embeddings, image_embeddings], dim=1)


        sample = self.pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            ip_adapter_image_embeds=image_embeddings,
            image=time_condition,
            controlnet_conditioning_scale=temporal_scale,
            num_inference_steps=25,
            height=256,
            width=1024,
            output_type="pt",
            generator=self.generator,
        )

        audio_img = sample.images[0]
        audio = denormalize_spectrogram(audio_img)
        audio = self.vocoder.inference(audio, lengths=160000)[0]
        audio = audio[: int(duration * 16000)]
        
        if is_postp:
            audio_save_path = output_dir / f'{video_path.stem}.neg.wav'
            video_save_path = output_dir / f'{video_path.stem}.neg.mp4'
        else:
            audio_save_path = output_dir / f'{video_path.stem}.step1.wav'
            video_save_path = output_dir / f'{video_path.stem}.step1.mp4'

        
        self.log.info(f"Saving generated audio and video to {output_dir}")
        sf.write(audio_save_path, audio, 16000)

        audio = AudioFileClip(audio_save_path)
        video = VideoFileClip(video_path)
        duration = min(audio.duration, video.duration)
        audio = audio.subclip(0, duration)
        video.audio = audio
        video = video.subclip(0, duration)
        video.write_videofile(video_save_path)
        self.log.info(f'Video saved to {video_save_path}')

        return audio_save_path, video_save_path