DeepSound-V1 / app.py
lym0302
bfloat16
0321bb5
raw
history blame
5.99 kB
import os
import sys
import time
import gradio as gr
import subprocess
from pathlib import Path
import requests
from moviepy.editor import AudioFileClip, VideoFileClip
project_root = os.path.dirname(os.path.abspath(__file__))
mmaudio_path = os.path.join(project_root, 'third_party', 'MMAudio')
sys.path.append(mmaudio_path)
from pipeline.pipeline import Pipeline
from third_party.MMAudio.mmaudio.eval_utils import setup_eval_logging
# download model
# os.makedirs("pretrained/mllm", exist_ok=True)
from huggingface_hub import snapshot_download
repo_local_path = snapshot_download(repo_id="lym0302/VideoLLaMA2.1-7B-AV-CoT")
remove_vo_model_dir = "pretrained/remove_vo/checkpoints"
os.makedirs(remove_vo_model_dir, exist_ok=True)
urls = ["https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/model_bs_roformer_ep_317_sdr_12.9755.ckpt",
"https://raw.githubusercontent.com/ZFTurbo/Music-Source-Separation-Training/main/configs/viperx/model_bs_roformer_ep_317_sdr_12.9755.yaml"]
for url in urls:
file_name = url.split("/")[-1] # Extract file name from URL
file_path = os.path.join(remove_vo_model_dir, file_name)
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192): # Use a chunk size of 8 KB
f.write(chunk)
print(f"File downloaded successfully and saved to {file_path}")
else:
print(f"Failed to download the file. Status code: {response.status_code}")
os.makedirs("pretrained/v2a/mmaudio", exist_ok=True)
setup_eval_logging()
pipeline = Pipeline(
step0_model_dir=repo_local_path,
step1_mode='mmaudio_small_44k',
step2_model_dir=repo_local_path,
step2_mode='cot',
step3_mode='bs_roformer',
)
output_dir = "output_gradio"
os.makedirs(output_dir, exist_ok=True)
skip_final_video = False
def video_to_audio(
video_input: gr.Video,
prompt: str='',
negative_prompt: str='',
mode: str='s4',
postp_mode: str='neg',
duration: float=10,
seed: int=42,):
log_messages = [] # 用于存储日志
def log_info(msg):
log_messages.append(msg)
return "\n".join(log_messages) # 每次返回完整的日志历史
if not video_input:
yield None, log_info("Error: No video input provided.")
return
yield None, log_info("Generate high-quality audio from video step-by-step...") # 初始化日志
st_infer = time.time()
video_input = str(video_input)
for step_results in pipeline.run_for_gradio(
video_input=video_input,
output_dir=output_dir,
mode=mode,
postp_mode=postp_mode,
prompt=prompt,
negative_prompt=negative_prompt,
duration=duration,
seed=seed
):
if step_results['log'] == 'Finish step-by-step v2a.':
break
else:
yield None, log_info(step_results['log'])
temp_final_audio_path = step_results["temp_final_audio_path"]
temp_final_video_path = step_results["temp_final_video_path"]
video_name_stem = Path(video_input).stem
final_audio_path = str(Path(output_dir) / f'{video_name_stem}.wav')
final_video_path = str(Path(output_dir) / f'{video_name_stem}.mp4')
if temp_final_audio_path is not None:
subprocess.run(['cp', str(temp_final_audio_path), final_audio_path], check=True)
step_results["final_audio_path"] = final_audio_path
if skip_final_video:
step_results["final_video_path"] = None
else:
if temp_final_video_path is not None:
subprocess.run(['cp', str(temp_final_video_path), final_video_path], check=True)
else:
audio = AudioFileClip(final_audio_path)
video = VideoFileClip(video_input)
duration = min(audio.duration, video.duration)
audio = audio.subclip(0, duration)
video.audio = audio
video = video.subclip(0, duration)
video.write_videofile(final_video_path)
step_results["final_video_path"] = final_video_path
et_infer = time.time()
print(f"Inference time: {et_infer - st_infer:.2f} s.")
print("step_results: ", step_results)
yield (final_video_path if os.path.exists(final_video_path) else None), log_info(step_results['log'])
video_to_audio_tab = gr.Interface(
fn=video_to_audio,
# Project page: <a href="https://hkchengrex.com/MMAudio/">https://hkchengrex.com/MMAudio/</a><br>
description="""
Code: <a href="https://github.com/lym0302/DeepSound-V1">https://github.com/lym0302/DeepSound-V1</a><br>
NOTE: It takes longer to process high-resolution videos (>384 px on the shorter side).
Doing so does not improve results.
This is a step-by-step v2a process and may take a long time.
If Post Processing is set to 'rm', the generated video may be None.
""",
inputs=[
gr.Video(),
gr.Text(label='Prompt'),
gr.Text(label='Negative prompt', value=''),
gr.Radio(["s3", "s4"], label="Mode", value="s4"),
gr.Radio(["rm", "rep", "neg"], label="Post Processing", value="neg"),
gr.Number(label='Duration (sec)', value=10, minimum=1),
gr.Number(label='Seed (42: random)', value=42, precision=0, minimum=-1),
],
outputs=[gr.Video(label="Generated Video"), gr.Text(label="Logs"),],
cache_examples=False,
title='DeepSound-V1 — Video-to-Audio Synthesis',
)
if __name__ == "__main__":
gr.TabbedInterface([video_to_audio_tab],
['Video-to-Audio']).launch(allowed_paths=[output_dir])
# if __name__ == "__main__":
# port = 8000
# gr.TabbedInterface([video_to_audio_tab, ],
# ['Video-to-Audio', ]).launch(
# server_port=port, allowed_paths=[output_dir])