Spaces:
Running
Running
# coding=utf-8 | |
# judge voice-over | |
from third_party.VideoLLaMA2.videollama2 import model_init, mm_infer | |
import logging | |
class Step2: | |
def __init__(self, model_path, step2_mode, modal_type="av"): | |
self.log = logging.getLogger(self.__class__.__name__) | |
self.log.setLevel(logging.INFO) | |
self.model, self.processor, self.tokenizer = model_init(model_path) | |
self.modal_type=modal_type | |
if modal_type == "a": | |
self.model.model.vision_tower = None | |
elif modal_type == "v": | |
self.model.model.audio_tower = None | |
elif modal_type == "av": | |
pass | |
else: | |
raise NotImplementedError | |
self.modal = 'audio' if modal_type == "a" else "video" | |
self.question = f"Given a video and its corresponding audio, determine whether the audio contains voice-over? Options: A. Yes, B. No. Choose A or B." | |
self.preprocess = self.processor[self.modal] | |
self.step2_mode = step2_mode | |
def run(self, video_audio_path): | |
# self.log.info("Step2: Given a video and its generated audio, determine whether the audio contains voice-over.") | |
audio_video_tensor = self.preprocess(video_audio_path, va=True) | |
output = mm_infer( | |
audio_video_tensor, | |
self.question, | |
model=self.model, | |
tokenizer=self.tokenizer, | |
modal=self.modal, | |
do_sample=False, | |
) | |
# print("oooooooooooooooooooooo: ", output) | |
if self.step2_mode == "cot": | |
output = output.split("<CONCLUSION>")[-1][1] | |
print("1111111111111111111111111: ", output) | |
output = (output == "A") | |
if output: | |
self.log.info(f"The video generated by Step1 ({video_audio_path}) contains voice-over.") | |
else: | |
self.log.info(f"The video generated by Step1 ({video_audio_path}) does not contain voice-over.") | |
self.log.info("Finish Step2 successfully.\n") | |
return output | |