lym0302
our
1fd4e9c
import logging
import os
from collections import defaultdict
from pathlib import Path
from typing import Union
import pandas as pd
import torch
from torch.utils.data.dataset import Dataset
log = logging.getLogger()
class AudioCapsData(Dataset):
def __init__(self, audio_path: Union[str, Path], csv_path: Union[str, Path]):
df = pd.read_csv(csv_path).to_dict(orient='records')
audio_files = sorted(os.listdir(audio_path))
audio_files = set(
[Path(f).stem for f in audio_files if f.endswith('.wav') or f.endswith('.flac')])
self.data = []
for row in df:
self.data.append({
'name': row['name'],
'caption': row['caption'],
})
self.audio_path = Path(audio_path)
self.csv_path = Path(csv_path)
log.info(f'Found {len(self.data)} matching audio files in {self.audio_path}')
def __getitem__(self, idx: int) -> torch.Tensor:
return self.data[idx]
def __len__(self):
return len(self.data)