import logging import random import numpy as np import torch from omegaconf import DictConfig from torch.utils.data import DataLoader, Dataset from torch.utils.data.dataloader import default_collate from torch.utils.data.distributed import DistributedSampler from mmaudio.data.eval.audiocaps import AudioCapsData from mmaudio.data.eval.video_dataset import MovieGen, VGGSound from mmaudio.data.extracted_audio import ExtractedAudio from mmaudio.data.extracted_vgg import ExtractedVGG from mmaudio.data.mm_dataset import MultiModalDataset from mmaudio.utils.dist_utils import local_rank log = logging.getLogger() # Re-seed randomness every time we start a worker def worker_init_fn(worker_id: int): worker_seed = torch.initial_seed() % (2**31) + worker_id + local_rank * 1000 np.random.seed(worker_seed) random.seed(worker_seed) log.debug(f'Worker {worker_id} re-seeded with seed {worker_seed} in rank {local_rank}') def load_vgg_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset: dataset = ExtractedVGG(tsv_path=data_cfg.tsv, data_dim=cfg.data_dim, premade_mmap_dir=data_cfg.memmap_dir) return dataset def load_audio_data(cfg: DictConfig, data_cfg: DictConfig) -> Dataset: dataset = ExtractedAudio(tsv_path=data_cfg.tsv, data_dim=cfg.data_dim, premade_mmap_dir=data_cfg.memmap_dir) return dataset def setup_training_datasets(cfg: DictConfig) -> tuple[Dataset, DistributedSampler, DataLoader]: if cfg.mini_train: vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG_val) audiocaps = load_audio_data(cfg, cfg.data.AudioCaps) dataset = MultiModalDataset([vgg], [audiocaps]) if cfg.example_train: video = load_vgg_data(cfg, cfg.data.Example_video) audio = load_audio_data(cfg, cfg.data.Example_audio) dataset = MultiModalDataset([video], [audio]) else: # load the largest one first freesound = load_audio_data(cfg, cfg.data.FreeSound) vgg = load_vgg_data(cfg, cfg.data.ExtractedVGG) audiocaps = load_audio_data(cfg, cfg.data.AudioCaps) audioset_sl = load_audio_data(cfg, cfg.data.AudioSetSL) bbcsound = load_audio_data(cfg, cfg.data.BBCSound) clotho = load_audio_data(cfg, cfg.data.Clotho) dataset = MultiModalDataset([vgg] * cfg.vgg_oversample_rate, [audiocaps, audioset_sl, bbcsound, freesound, clotho]) batch_size = cfg.batch_size num_workers = cfg.num_workers pin_memory = cfg.pin_memory sampler, loader = construct_loader(dataset, batch_size, num_workers, shuffle=True, drop_last=True, pin_memory=pin_memory) return dataset, sampler, loader def setup_test_datasets(cfg): dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_test) batch_size = cfg.batch_size num_workers = cfg.num_workers pin_memory = cfg.pin_memory sampler, loader = construct_loader(dataset, batch_size, num_workers, shuffle=False, drop_last=False, pin_memory=pin_memory) return dataset, sampler, loader def setup_val_datasets(cfg: DictConfig) -> tuple[Dataset, DataLoader, DataLoader]: if cfg.example_train: dataset = load_vgg_data(cfg, cfg.data.Example_video) else: dataset = load_vgg_data(cfg, cfg.data.ExtractedVGG_val) val_batch_size = cfg.batch_size val_eval_batch_size = cfg.eval_batch_size num_workers = cfg.num_workers pin_memory = cfg.pin_memory _, val_loader = construct_loader(dataset, val_batch_size, num_workers, shuffle=False, drop_last=False, pin_memory=pin_memory) _, eval_loader = construct_loader(dataset, val_eval_batch_size, num_workers, shuffle=False, drop_last=False, pin_memory=pin_memory) return dataset, val_loader, eval_loader def setup_eval_dataset(dataset_name: str, cfg: DictConfig) -> tuple[Dataset, DataLoader]: if dataset_name.startswith('audiocaps_full'): dataset = AudioCapsData(cfg.eval_data.AudioCaps_full.audio_path, cfg.eval_data.AudioCaps_full.csv_path) elif dataset_name.startswith('audiocaps'): dataset = AudioCapsData(cfg.eval_data.AudioCaps.audio_path, cfg.eval_data.AudioCaps.csv_path) elif dataset_name.startswith('moviegen'): dataset = MovieGen(cfg.eval_data.MovieGen.video_path, cfg.eval_data.MovieGen.jsonl_path, duration_sec=cfg.duration_s) elif dataset_name.startswith('vggsound'): dataset = VGGSound(cfg.eval_data.VGGSound.video_path, cfg.eval_data.VGGSound.csv_path, duration_sec=cfg.duration_s) else: raise ValueError(f'Invalid dataset name: {dataset_name}') batch_size = cfg.batch_size num_workers = cfg.num_workers pin_memory = cfg.pin_memory _, loader = construct_loader(dataset, batch_size, num_workers, shuffle=False, drop_last=False, pin_memory=pin_memory, error_avoidance=True) return dataset, loader def error_avoidance_collate(batch): batch = list(filter(lambda x: x is not None, batch)) return default_collate(batch) def construct_loader(dataset: Dataset, batch_size: int, num_workers: int, *, shuffle: bool = True, drop_last: bool = True, pin_memory: bool = False, error_avoidance: bool = False) -> tuple[DistributedSampler, DataLoader]: train_sampler = DistributedSampler(dataset, rank=local_rank, shuffle=shuffle) train_loader = DataLoader(dataset, batch_size, sampler=train_sampler, num_workers=num_workers, worker_init_fn=worker_init_fn, drop_last=drop_last, persistent_workers=num_workers > 0, pin_memory=pin_memory, collate_fn=error_avoidance_collate if error_avoidance else None) return train_sampler, train_loader