# coding=utf-8 # judge voice-over from third_party.VideoLLaMA2.videollama2 import model_init, mm_infer import logging class Step2: def __init__(self, model_path, step2_mode, modal_type="av"): self.log = logging.getLogger(self.__class__.__name__) self.log.setLevel(logging.INFO) self.model, self.processor, self.tokenizer = model_init(model_path) self.modal_type=modal_type if modal_type == "a": self.model.model.vision_tower = None elif modal_type == "v": self.model.model.audio_tower = None elif modal_type == "av": pass else: raise NotImplementedError self.modal = 'audio' if modal_type == "a" else "video" self.question = f"Given a video and its corresponding audio, determine whether the audio contains voice-over? Options: A. Yes, B. No. Choose A or B." self.preprocess = self.processor[self.modal] self.step2_mode = step2_mode def run(self, video_audio_path): # self.log.info("Step2: Given a video and its generated audio, determine whether the audio contains voice-over.") audio_video_tensor = self.preprocess(video_audio_path, va=True) output = mm_infer( audio_video_tensor, self.question, model=self.model, tokenizer=self.tokenizer, modal=self.modal, do_sample=False, ) # print("oooooooooooooooooooooo: ", output) if self.step2_mode == "cot": output = output.split("")[-1][1] print("1111111111111111111111111: ", output) output = (output == "A") if output: self.log.info(f"The video generated by Step1 ({video_audio_path}) contains voice-over.") else: self.log.info(f"The video generated by Step1 ({video_audio_path}) does not contain voice-over.") self.log.info("Finish Step2 successfully.\n") return output