Spaces:
Running
Running
"""Boxes for defining PyTorch models.""" | |
import graphlib | |
from lynxkite.core import ops, workspace | |
from lynxkite.core.ops import Parameter as P | |
import torch | |
import torch_geometric as pyg | |
from dataclasses import dataclass | |
ENV = "PyTorch model" | |
def reg(name, inputs=[], outputs=None, params=[]): | |
if outputs is None: | |
outputs = inputs | |
return ops.register_passive_op( | |
ENV, | |
name, | |
inputs=[ | |
ops.Input(name=name, position="bottom", type="tensor") for name in inputs | |
], | |
outputs=[ | |
ops.Output(name=name, position="top", type="tensor") for name in outputs | |
], | |
params=params, | |
) | |
reg("Input: embedding", outputs=["x"]) | |
reg("Input: graph edges", outputs=["edges"]) | |
reg("Input: label", outputs=["y"]) | |
reg("Input: positive sample", outputs=["x_pos"]) | |
reg("Input: negative sample", outputs=["x_neg"]) | |
reg("Input: sequential", outputs=["y"]) | |
reg("Input: zeros", outputs=["x"]) | |
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"]) | |
reg( | |
"Neural ODE", | |
inputs=["x"], | |
params=[ | |
P.basic("relative_tolerance"), | |
P.basic("absolute_tolerance"), | |
P.options( | |
"method", | |
[ | |
"dopri8", | |
"dopri5", | |
"bosh3", | |
"fehlberg2", | |
"adaptive_heun", | |
"euler", | |
"midpoint", | |
"rk4", | |
"explicit_adams", | |
"implicit_adams", | |
], | |
), | |
], | |
) | |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"]) | |
reg("LayerNorm", inputs=["x"]) | |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)]) | |
reg("Linear", inputs=["x"], params=[P.basic("output_dim", "same")]) | |
reg("Softmax", inputs=["x"]) | |
reg( | |
"Graph conv", | |
inputs=["x", "edges"], | |
outputs=["x"], | |
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])], | |
) | |
reg( | |
"Activation", | |
inputs=["x"], | |
params=[P.options("type", ["ReLU", "Leaky ReLU", "Tanh", "Mish"])], | |
) | |
reg("Concatenate", inputs=["a", "b"], outputs=["x"]) | |
reg("Add", inputs=["a", "b"], outputs=["x"]) | |
reg("Subtract", inputs=["a", "b"], outputs=["x"]) | |
reg("Multiply", inputs=["a", "b"], outputs=["x"]) | |
reg("MSE loss", inputs=["x", "y"], outputs=["loss"]) | |
reg("Triplet margin loss", inputs=["x", "x_pos", "x_neg"], outputs=["loss"]) | |
reg("Cross-entropy loss", inputs=["x", "y"], outputs=["loss"]) | |
reg( | |
"Optimizer", | |
inputs=["loss"], | |
outputs=[], | |
params=[ | |
P.options( | |
"type", | |
[ | |
"AdamW", | |
"Adafactor", | |
"Adagrad", | |
"SGD", | |
"Lion", | |
"Paged AdamW", | |
"Galore AdamW", | |
], | |
), | |
P.basic("lr", 0.001), | |
], | |
) | |
ops.register_passive_op( | |
ENV, | |
"Repeat", | |
inputs=[ops.Input(name="input", position="top", type="tensor")], | |
outputs=[ops.Output(name="output", position="bottom", type="tensor")], | |
params=[ | |
ops.Parameter.basic("times", 1, int), | |
ops.Parameter.basic("same_weights", True, bool), | |
], | |
) | |
ops.register_passive_op( | |
ENV, | |
"Recurrent chain", | |
inputs=[ops.Input(name="input", position="top", type="tensor")], | |
outputs=[ops.Output(name="output", position="bottom", type="tensor")], | |
params=[], | |
) | |
def _to_id(s: str) -> str: | |
"""Replaces all non-alphanumeric characters with underscores.""" | |
return "".join(c if c.isalnum() else "_" for c in s) | |
class ModelConfig: | |
model: torch.nn.Module | |
model_inputs: list[str] | |
model_outputs: list[str] | |
loss_inputs: list[str] | |
loss: torch.nn.Module | |
optimizer: torch.optim.Optimizer | |
def _forward(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
model_inputs = [inputs[i] for i in self.model_inputs] | |
output = self.model(*model_inputs) | |
if not isinstance(output, tuple): | |
output = (output,) | |
values = {k: v for k, v in zip(self.model_outputs, output)} | |
return values | |
def inference(self, inputs: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: | |
# TODO: Do multiple batches. | |
self.model.eval() | |
return self._forward(inputs) | |
def train(self, inputs: dict[str, torch.Tensor]) -> float: | |
"""Train the model for one epoch. Returns the loss.""" | |
# TODO: Do multiple batches. | |
self.model.train() | |
self.optimizer.zero_grad() | |
values = self._forward(inputs) | |
values.update(inputs) | |
loss_inputs = [values[i] for i in self.loss_inputs] | |
loss = self.loss(*loss_inputs) | |
loss.backward() | |
self.optimizer.step() | |
return loss.item() | |
def build_model( | |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor] | |
) -> ModelConfig: | |
"""Builds the model described in the workspace.""" | |
optimizers = [] | |
nodes = {} | |
for node in ws.nodes: | |
nodes[node.id] = node | |
if node.data.title == "Optimizer": | |
optimizers.append(node.id) | |
assert optimizers, "No optimizer found." | |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}" | |
[optimizer] = optimizers | |
dependencies = {n.id: [] for n in ws.nodes} | |
edges = {} | |
# TODO: Dissolve repeat boxes here. | |
for e in ws.edges: | |
dependencies[e.target].append(e.source) | |
edges.setdefault((e.target, e.targetHandle), []).append( | |
(e.source, e.sourceHandle) | |
) | |
sizes = {} | |
for k, i in inputs.items(): | |
sizes[k] = i.shape[-1] | |
ts = graphlib.TopologicalSorter(dependencies) | |
layers = [] | |
loss_layers = [] | |
in_loss = set() | |
cfg = {} | |
loss_inputs = set() | |
used_inputs = set() | |
for node_id in ts.static_order(): | |
node = nodes[node_id] | |
t = node.data.title | |
p = node.data.params | |
for b in dependencies[node_id]: | |
if b in in_loss: | |
in_loss.add(node_id) | |
ls = loss_layers if node_id in in_loss else layers | |
nid = _to_id(node_id) | |
match t: | |
case "Linear": | |
[(ib, ih)] = edges[node_id, "x"] | |
i = _to_id(ib) + "_" + ih | |
used_inputs.add(i) | |
isize = sizes[i] | |
osize = isize if p["output_dim"] == "same" else int(p["output_dim"]) | |
ls.append((torch.nn.Linear(isize, osize), f"{i} -> {nid}_x")) | |
sizes[f"{nid}_x"] = osize | |
case "Activation": | |
[(ib, ih)] = edges[node_id, "x"] | |
i = _to_id(ib) + "_" + ih | |
used_inputs.add(i) | |
f = getattr(torch.nn.functional, p["type"].lower().replace(" ", "_")) | |
ls.append((f, f"{i} -> {nid}_x")) | |
sizes[f"{nid}_x"] = sizes[i] | |
case "MSE loss": | |
[(xb, xh)] = edges[node_id, "x"] | |
xi = _to_id(xb) + "_" + xh | |
[(yb, yh)] = edges[node_id, "y"] | |
yi = _to_id(yb) + "_" + yh | |
loss_inputs.add(xi) | |
loss_inputs.add(yi) | |
in_loss.add(node_id) | |
loss_layers.append( | |
(torch.nn.functional.mse_loss, f"{xi}, {yi} -> {nid}_loss") | |
) | |
cfg["model_inputs"] = used_inputs & inputs.keys() | |
cfg["model_outputs"] = loss_inputs - inputs.keys() | |
cfg["loss_inputs"] = loss_inputs | |
# Make sure the trained output is output from the last model layer. | |
outputs = ", ".join(cfg["model_outputs"]) | |
layers.append((torch.nn.Identity(), f"{outputs} -> {outputs}")) | |
# Create model. | |
cfg["model"] = pyg.nn.Sequential(", ".join(used_inputs & inputs.keys()), layers) | |
# Make sure the loss is output from the last loss layer. | |
[(lossb, lossh)] = edges[optimizer, "loss"] | |
lossi = _to_id(lossb) + "_" + lossh | |
loss_layers.append((torch.nn.Identity(), f"{lossi} -> loss")) | |
# Create loss function. | |
cfg["loss"] = pyg.nn.Sequential(", ".join(loss_inputs), loss_layers) | |
assert not list(cfg["loss"].parameters()), ( | |
f"loss should have no parameters: {list(cfg['loss'].parameters())}" | |
) | |
# Create optimizer. | |
p = nodes[optimizer].data.params | |
o = getattr(torch.optim, p["type"]) | |
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"]) | |
return ModelConfig(**cfg) | |