Spaces:
Running
Running
adding the query part
Browse files
examples/LynxScribe Image RAG
CHANGED
@@ -20,6 +20,20 @@
|
|
20 |
"sourceHandle": "output",
|
21 |
"target": "LynxScribe Image RAG Builder 1",
|
22 |
"targetHandle": "image_urls"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
}
|
24 |
],
|
25 |
"env": "LynxScribe",
|
@@ -95,6 +109,8 @@
|
|
95 |
},
|
96 |
{
|
97 |
"data": {
|
|
|
|
|
98 |
"display": null,
|
99 |
"error": null,
|
100 |
"meta": {
|
@@ -280,9 +296,7 @@
|
|
280 |
},
|
281 |
"type": "basic"
|
282 |
},
|
283 |
-
"params": {
|
284 |
-
"image_rag_out_path": "image_test_rag_graph.pickle"
|
285 |
-
},
|
286 |
"status": "done",
|
287 |
"title": "LynxScribe Image RAG Builder"
|
288 |
},
|
@@ -295,6 +309,117 @@
|
|
295 |
},
|
296 |
"type": "basic",
|
297 |
"width": 479.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
}
|
299 |
]
|
300 |
}
|
|
|
20 |
"sourceHandle": "output",
|
21 |
"target": "LynxScribe Image RAG Builder 1",
|
22 |
"targetHandle": "image_urls"
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": "LynxScribe Image RAG Builder 1 LynxScribe Image RAG Query 1",
|
26 |
+
"source": "LynxScribe Image RAG Builder 1",
|
27 |
+
"sourceHandle": "output",
|
28 |
+
"target": "LynxScribe Image RAG Query 1",
|
29 |
+
"targetHandle": "rag_graph"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"id": "Input chat 1 LynxScribe Image RAG Query 1",
|
33 |
+
"source": "Input chat 1",
|
34 |
+
"sourceHandle": "output",
|
35 |
+
"target": "LynxScribe Image RAG Query 1",
|
36 |
+
"targetHandle": "text"
|
37 |
}
|
38 |
],
|
39 |
"env": "LynxScribe",
|
|
|
109 |
},
|
110 |
{
|
111 |
"data": {
|
112 |
+
"__execution_delay": 0.0,
|
113 |
+
"collapsed": null,
|
114 |
"display": null,
|
115 |
"error": null,
|
116 |
"meta": {
|
|
|
296 |
},
|
297 |
"type": "basic"
|
298 |
},
|
299 |
+
"params": {},
|
|
|
|
|
300 |
"status": "done",
|
301 |
"title": "LynxScribe Image RAG Builder"
|
302 |
},
|
|
|
309 |
},
|
310 |
"type": "basic",
|
311 |
"width": 479.0
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"data": {
|
315 |
+
"__execution_delay": 0.0,
|
316 |
+
"collapsed": null,
|
317 |
+
"display": null,
|
318 |
+
"error": null,
|
319 |
+
"meta": {
|
320 |
+
"inputs": {},
|
321 |
+
"name": "Input chat",
|
322 |
+
"outputs": {
|
323 |
+
"output": {
|
324 |
+
"name": "output",
|
325 |
+
"position": "right",
|
326 |
+
"type": {
|
327 |
+
"type": "None"
|
328 |
+
}
|
329 |
+
}
|
330 |
+
},
|
331 |
+
"params": {
|
332 |
+
"chat": {
|
333 |
+
"default": null,
|
334 |
+
"name": "chat",
|
335 |
+
"type": {
|
336 |
+
"type": "<class 'str'>"
|
337 |
+
}
|
338 |
+
}
|
339 |
+
},
|
340 |
+
"position": {
|
341 |
+
"x": 1336.0,
|
342 |
+
"y": 378.0
|
343 |
+
},
|
344 |
+
"type": "basic"
|
345 |
+
},
|
346 |
+
"params": {
|
347 |
+
"chat": "Show me two cyclists!"
|
348 |
+
},
|
349 |
+
"status": "done",
|
350 |
+
"title": "Input chat"
|
351 |
+
},
|
352 |
+
"dragHandle": ".bg-primary",
|
353 |
+
"height": 214.0,
|
354 |
+
"id": "Input chat 1",
|
355 |
+
"position": {
|
356 |
+
"x": -310.1420152146455,
|
357 |
+
"y": -139.39548490290966
|
358 |
+
},
|
359 |
+
"type": "basic",
|
360 |
+
"width": 387.0
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"data": {
|
364 |
+
"display": null,
|
365 |
+
"error": null,
|
366 |
+
"meta": {
|
367 |
+
"inputs": {
|
368 |
+
"rag_graph": {
|
369 |
+
"name": "rag_graph",
|
370 |
+
"position": "bottom",
|
371 |
+
"type": {
|
372 |
+
"type": "<class 'inspect._empty'>"
|
373 |
+
}
|
374 |
+
},
|
375 |
+
"text": {
|
376 |
+
"name": "text",
|
377 |
+
"position": "left",
|
378 |
+
"type": {
|
379 |
+
"type": "<class 'inspect._empty'>"
|
380 |
+
}
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"name": "LynxScribe Image RAG Query",
|
384 |
+
"outputs": {
|
385 |
+
"output": {
|
386 |
+
"name": "output",
|
387 |
+
"position": "right",
|
388 |
+
"type": {
|
389 |
+
"type": "None"
|
390 |
+
}
|
391 |
+
}
|
392 |
+
},
|
393 |
+
"params": {
|
394 |
+
"top_k": {
|
395 |
+
"default": 3.0,
|
396 |
+
"name": "top_k",
|
397 |
+
"type": {
|
398 |
+
"type": "<class 'int'>"
|
399 |
+
}
|
400 |
+
}
|
401 |
+
},
|
402 |
+
"position": {
|
403 |
+
"x": 1419.0,
|
404 |
+
"y": 371.0
|
405 |
+
},
|
406 |
+
"type": "basic"
|
407 |
+
},
|
408 |
+
"params": {
|
409 |
+
"top_k": 3.0
|
410 |
+
},
|
411 |
+
"status": "done",
|
412 |
+
"title": "LynxScribe Image RAG Query"
|
413 |
+
},
|
414 |
+
"dragHandle": ".bg-primary",
|
415 |
+
"height": 200.0,
|
416 |
+
"id": "LynxScribe Image RAG Query 1",
|
417 |
+
"position": {
|
418 |
+
"x": 908.9211080204011,
|
419 |
+
"y": -132.3031800030364
|
420 |
+
},
|
421 |
+
"type": "basic",
|
422 |
+
"width": 200.0
|
423 |
}
|
424 |
]
|
425 |
}
|
lynxkite-lynxscribe/src/lynxkite_lynxscribe/lynxscribe_ops.py
CHANGED
@@ -6,6 +6,7 @@ from google.cloud import storage
|
|
6 |
from copy import deepcopy
|
7 |
import asyncio
|
8 |
import pandas as pd
|
|
|
9 |
|
10 |
from lynxscribe.core.llm.base import get_llm_engine
|
11 |
from lynxscribe.core.vector_store.base import get_vector_store
|
@@ -28,6 +29,11 @@ from lynxkite.core import ops
|
|
28 |
import json
|
29 |
from lynxkite.core.executors import one_by_one
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
ENV = "LynxScribe"
|
32 |
one_by_one.register(ENV)
|
33 |
op = ops.op_registration(ENV)
|
@@ -64,13 +70,17 @@ def ls_rag_graph(
|
|
64 |
collection_name: str = "lynx",
|
65 |
text_embedder_interface: str = "openai",
|
66 |
text_embedder_model_name_or_path: str = "text-embedding-3-large",
|
|
|
67 |
):
|
68 |
"""
|
69 |
Returns with a vector store instance.
|
70 |
"""
|
71 |
|
72 |
# getting the text embedder instance
|
73 |
-
|
|
|
|
|
|
|
74 |
text_embedder = TextEmbedder(llm=llm, model=text_embedder_model_name_or_path)
|
75 |
|
76 |
# getting the vector store
|
@@ -95,15 +105,20 @@ def ls_image_describer(
|
|
95 |
*,
|
96 |
llm_interface: str = "openai",
|
97 |
llm_visual_model: str = "gpt-4o",
|
98 |
-
llm_prompt_path: str = "
|
99 |
llm_prompt_name: str = "cot_picture_descriptor",
|
|
|
100 |
):
|
101 |
"""
|
102 |
Returns with an image describer instance.
|
103 |
TODO: adding a relative path to the prompt path + adding model kwargs
|
104 |
"""
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
prompt_base = load_config(llm_prompt_path)[llm_prompt_name]
|
108 |
|
109 |
return {
|
@@ -135,7 +150,7 @@ async def ls_image_rag_builder(
|
|
135 |
|
136 |
# handling inputs
|
137 |
image_describer = image_describer[0]["image_describer"]
|
138 |
-
image_urls = image_urls[
|
139 |
rag_graph = rag_graph[0]["rag_graph"]
|
140 |
|
141 |
# generate prompts from inputs
|
@@ -215,10 +230,47 @@ async def ls_image_rag_builder(
|
|
215 |
# adding the embeddings to the RAG graph
|
216 |
rag_graph.kg_base.vector_store.upsert(embedding_list)
|
217 |
|
218 |
-
# saving the RAG graph
|
219 |
-
rag_graph.kg_base.save(image_rag_out_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
|
|
|
222 |
|
223 |
|
224 |
@output_on_top
|
|
|
6 |
from copy import deepcopy
|
7 |
import asyncio
|
8 |
import pandas as pd
|
9 |
+
import os
|
10 |
|
11 |
from lynxscribe.core.llm.base import get_llm_engine
|
12 |
from lynxscribe.core.vector_store.base import get_vector_store
|
|
|
29 |
import json
|
30 |
from lynxkite.core.executors import one_by_one
|
31 |
|
32 |
+
# logger
|
33 |
+
# import logging
|
34 |
+
# logging.basicConfig(level=logging.INFO)
|
35 |
+
# logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
ENV = "LynxScribe"
|
38 |
one_by_one.register(ENV)
|
39 |
op = ops.op_registration(ENV)
|
|
|
70 |
collection_name: str = "lynx",
|
71 |
text_embedder_interface: str = "openai",
|
72 |
text_embedder_model_name_or_path: str = "text-embedding-3-large",
|
73 |
+
api_key_name: str = "OPENAI_API_KEY",
|
74 |
):
|
75 |
"""
|
76 |
Returns with a vector store instance.
|
77 |
"""
|
78 |
|
79 |
# getting the text embedder instance
|
80 |
+
llm_params = {"name": text_embedder_interface}
|
81 |
+
if api_key_name:
|
82 |
+
llm_params["api_key"] = os.getenv(api_key_name)
|
83 |
+
llm = get_llm_engine(**llm_params)
|
84 |
text_embedder = TextEmbedder(llm=llm, model=text_embedder_model_name_or_path)
|
85 |
|
86 |
# getting the vector store
|
|
|
105 |
*,
|
106 |
llm_interface: str = "openai",
|
107 |
llm_visual_model: str = "gpt-4o",
|
108 |
+
llm_prompt_path: str = "lynxkite-lynxscribe/promptdb/image_description_prompts.yaml",
|
109 |
llm_prompt_name: str = "cot_picture_descriptor",
|
110 |
+
api_key_name: str = "OPENAI_API_KEY",
|
111 |
):
|
112 |
"""
|
113 |
Returns with an image describer instance.
|
114 |
TODO: adding a relative path to the prompt path + adding model kwargs
|
115 |
"""
|
116 |
|
117 |
+
llm_params = {"name": llm_interface}
|
118 |
+
if api_key_name:
|
119 |
+
llm_params["api_key"] = os.getenv(api_key_name)
|
120 |
+
llm = get_llm_engine(**llm_params)
|
121 |
+
|
122 |
prompt_base = load_config(llm_prompt_path)[llm_prompt_name]
|
123 |
|
124 |
return {
|
|
|
150 |
|
151 |
# handling inputs
|
152 |
image_describer = image_describer[0]["image_describer"]
|
153 |
+
image_urls = image_urls["image_urls"]
|
154 |
rag_graph = rag_graph[0]["rag_graph"]
|
155 |
|
156 |
# generate prompts from inputs
|
|
|
230 |
# adding the embeddings to the RAG graph
|
231 |
rag_graph.kg_base.vector_store.upsert(embedding_list)
|
232 |
|
233 |
+
# # saving the RAG graph
|
234 |
+
# rag_graph.kg_base.save(image_rag_out_path)
|
235 |
+
|
236 |
+
return {"knowledge_base": rag_graph}
|
237 |
+
|
238 |
+
|
239 |
+
@op("LynxScribe RAG Graph Saver")
|
240 |
+
def ls_save_rag_graph(
|
241 |
+
knowledge_base,
|
242 |
+
*,
|
243 |
+
image_rag_out_path: str = "image_test_rag_graph.pickle",
|
244 |
+
):
|
245 |
+
"""
|
246 |
+
Saves the RAG graph to a pickle file.
|
247 |
+
"""
|
248 |
+
|
249 |
+
knowledge_base.kg_base.save(image_rag_out_path)
|
250 |
+
return None
|
251 |
+
|
252 |
+
|
253 |
+
@ops.input_position(rag_graph="bottom")
|
254 |
+
@op("LynxScribe Image RAG Query")
|
255 |
+
async def search_context(rag_graph, text, *, top_k=3):
|
256 |
+
# get all similarities
|
257 |
+
emb_similarities = await rag_graph.search_context(
|
258 |
+
text, max_results=top_k, unique_metadata_key="image_url"
|
259 |
+
)
|
260 |
+
|
261 |
+
# get the image urls, scores and descriptions
|
262 |
+
result_list = []
|
263 |
+
|
264 |
+
for emb_sim in emb_similarities:
|
265 |
+
image_url = emb_sim.embedding.metadata["image_url"]
|
266 |
+
score = emb_sim.score
|
267 |
+
description = emb_sim.embedding.document
|
268 |
+
result_list.append(
|
269 |
+
{"image_url": image_url, "score": score, "description": description}
|
270 |
+
)
|
271 |
|
272 |
+
print(result_list)
|
273 |
+
return {"embedding_similarities": result_list}
|
274 |
|
275 |
|
276 |
@output_on_top
|