Spaces:
Running
Running
Test for repeats.
Browse files
examples/Model definition
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
{
|
25 |
"id": "Input: tensor 1 Linear 2",
|
26 |
"source": "Input: tensor 1",
|
27 |
-
"sourceHandle": "
|
28 |
"target": "Linear 2",
|
29 |
"targetHandle": "x"
|
30 |
},
|
@@ -45,7 +45,7 @@
|
|
45 |
{
|
46 |
"id": "Input: tensor 3 MSE loss 2",
|
47 |
"source": "Input: tensor 3",
|
48 |
-
"sourceHandle": "
|
49 |
"target": "MSE loss 2",
|
50 |
"targetHandle": "y"
|
51 |
}
|
@@ -302,8 +302,8 @@
|
|
302 |
"inputs": {},
|
303 |
"name": "Input: tensor",
|
304 |
"outputs": {
|
305 |
-
"
|
306 |
-
"name": "
|
307 |
"position": "top",
|
308 |
"type": {
|
309 |
"type": "tensor"
|
@@ -352,8 +352,8 @@
|
|
352 |
"inputs": {},
|
353 |
"name": "Input: tensor",
|
354 |
"outputs": {
|
355 |
-
"
|
356 |
-
"name": "
|
357 |
"position": "top",
|
358 |
"type": {
|
359 |
"type": "tensor"
|
|
|
24 |
{
|
25 |
"id": "Input: tensor 1 Linear 2",
|
26 |
"source": "Input: tensor 1",
|
27 |
+
"sourceHandle": "output",
|
28 |
"target": "Linear 2",
|
29 |
"targetHandle": "x"
|
30 |
},
|
|
|
45 |
{
|
46 |
"id": "Input: tensor 3 MSE loss 2",
|
47 |
"source": "Input: tensor 3",
|
48 |
+
"sourceHandle": "output",
|
49 |
"target": "MSE loss 2",
|
50 |
"targetHandle": "y"
|
51 |
}
|
|
|
302 |
"inputs": {},
|
303 |
"name": "Input: tensor",
|
304 |
"outputs": {
|
305 |
+
"output": {
|
306 |
+
"name": "output",
|
307 |
"position": "top",
|
308 |
"type": {
|
309 |
"type": "tensor"
|
|
|
352 |
"inputs": {},
|
353 |
"name": "Input: tensor",
|
354 |
"outputs": {
|
355 |
+
"output": {
|
356 |
+
"name": "output",
|
357 |
"position": "top",
|
358 |
"type": {
|
359 |
"type": "tensor"
|
lynxkite-app/web/src/workspace/nodes/NodeParameter.tsx
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
// @ts-ignore
|
2 |
import { useRef } from "react";
|
|
|
3 |
import ArrowsHorizontal from "~icons/tabler/arrows-horizontal.jsx";
|
4 |
|
5 |
const BOOLEAN = "<class 'bool'>";
|
|
|
|
|
1 |
import { useRef } from "react";
|
2 |
+
// @ts-ignore
|
3 |
import ArrowsHorizontal from "~icons/tabler/arrows-horizontal.jsx";
|
4 |
|
5 |
const BOOLEAN = "<class 'bool'>";
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
@@ -42,7 +42,7 @@ def reg(name, inputs=[], outputs=None, params=[]):
|
|
42 |
)
|
43 |
|
44 |
|
45 |
-
reg("Input: tensor", outputs=["
|
46 |
reg("Input: graph edges", outputs=["edges"])
|
47 |
reg("Input: sequential", outputs=["y"])
|
48 |
|
@@ -274,20 +274,22 @@ class ModelBuilder:
|
|
274 |
self.catalog = ops.CATALOGS[ENV]
|
275 |
optimizers = []
|
276 |
self.nodes: dict[str, workspace.WorkspaceNode] = {}
|
|
|
277 |
for node in ws.nodes:
|
278 |
self.nodes[node.id] = node
|
279 |
if node.data.title == "Optimizer":
|
280 |
optimizers.append(node.id)
|
|
|
|
|
|
|
|
|
281 |
assert optimizers, "No optimizer found."
|
282 |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
|
283 |
[self.optimizer] = optimizers
|
284 |
-
self.dependencies = {n
|
285 |
-
self.in_edges: dict[str, dict[str, list[(str, str)]]] = {}
|
286 |
-
self.out_edges: dict[str, dict[str, list[(str, str)]]] = {}
|
287 |
-
repeats = []
|
288 |
for e in ws.edges:
|
289 |
-
if self.nodes[e.target].data.title == "Repeat":
|
290 |
-
repeats.append(e.target)
|
291 |
self.dependencies[e.target].append(e.source)
|
292 |
self.in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
|
293 |
(e.source, e.sourceHandle)
|
@@ -298,6 +300,8 @@ class ModelBuilder:
|
|
298 |
# Split repeat boxes into start and end, and insert them into the flow.
|
299 |
# TODO: Think about recursive repeats.
|
300 |
for repeat in repeats:
|
|
|
|
|
301 |
start_id = f"START {repeat}"
|
302 |
end_id = f"END {repeat}"
|
303 |
# repeat -> first <- real_input
|
@@ -334,7 +338,7 @@ class ModelBuilder:
|
|
334 |
k if k != (last, lasth) else (end_id, "output")
|
335 |
for k in self.in_edges[real_output][real_outputh]
|
336 |
]
|
337 |
-
self.inv_dependencies = {n: [] for n in self.
|
338 |
for k, v in self.dependencies.items():
|
339 |
for i in v:
|
340 |
self.inv_dependencies[i].append(k)
|
@@ -342,6 +346,19 @@ class ModelBuilder:
|
|
342 |
for k, i in inputs.items():
|
343 |
self.sizes[k] = i.shape[-1]
|
344 |
self.layers = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
def all_upstream(self, node: str) -> set[str]:
|
347 |
"""Returns all nodes upstream of a node."""
|
@@ -361,12 +378,7 @@ class ModelBuilder:
|
|
361 |
|
362 |
def run_node(self, node_id: str) -> None:
|
363 |
"""Adds the layer(s) produced by this node to self.layers."""
|
364 |
-
|
365 |
-
node = self.nodes[node_id.removeprefix("START ")]
|
366 |
-
elif node_id.startswith("END "):
|
367 |
-
node = self.nodes[node_id.removeprefix("END ")]
|
368 |
-
else:
|
369 |
-
node = self.nodes[node_id]
|
370 |
t = node.data.title
|
371 |
op = self.catalog[t]
|
372 |
p = op.convert_params(node.data.params)
|
@@ -385,6 +397,7 @@ class ModelBuilder:
|
|
385 |
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
|
386 |
)
|
387 |
repeated_layers = [e for e in self.layers if e._origin_id in repeated_nodes]
|
|
|
388 |
for i in range(p["times"] - 1):
|
389 |
# Copy repeat section's output to repeat section's input.
|
390 |
self.layers.append(
|
|
|
42 |
)
|
43 |
|
44 |
|
45 |
+
reg("Input: tensor", outputs=["output"], params=[P.basic("name")])
|
46 |
reg("Input: graph edges", outputs=["edges"])
|
47 |
reg("Input: sequential", outputs=["y"])
|
48 |
|
|
|
274 |
self.catalog = ops.CATALOGS[ENV]
|
275 |
optimizers = []
|
276 |
self.nodes: dict[str, workspace.WorkspaceNode] = {}
|
277 |
+
repeats: list[str] = []
|
278 |
for node in ws.nodes:
|
279 |
self.nodes[node.id] = node
|
280 |
if node.data.title == "Optimizer":
|
281 |
optimizers.append(node.id)
|
282 |
+
elif node.data.title == "Repeat":
|
283 |
+
repeats.append(node.id)
|
284 |
+
self.nodes[f"START {node.id}"] = node
|
285 |
+
self.nodes[f"END {node.id}"] = node
|
286 |
assert optimizers, "No optimizer found."
|
287 |
assert len(optimizers) == 1, f"More than one optimizer found: {optimizers}"
|
288 |
[self.optimizer] = optimizers
|
289 |
+
self.dependencies = {n: [] for n in self.nodes}
|
290 |
+
self.in_edges: dict[str, dict[str, list[(str, str)]]] = {n: {} for n in self.nodes}
|
291 |
+
self.out_edges: dict[str, dict[str, list[(str, str)]]] = {n: {} for n in self.nodes}
|
|
|
292 |
for e in ws.edges:
|
|
|
|
|
293 |
self.dependencies[e.target].append(e.source)
|
294 |
self.in_edges.setdefault(e.target, {}).setdefault(e.targetHandle, []).append(
|
295 |
(e.source, e.sourceHandle)
|
|
|
300 |
# Split repeat boxes into start and end, and insert them into the flow.
|
301 |
# TODO: Think about recursive repeats.
|
302 |
for repeat in repeats:
|
303 |
+
if not self.out_edges[repeat] or not self.in_edges[repeat]:
|
304 |
+
continue
|
305 |
start_id = f"START {repeat}"
|
306 |
end_id = f"END {repeat}"
|
307 |
# repeat -> first <- real_input
|
|
|
338 |
k if k != (last, lasth) else (end_id, "output")
|
339 |
for k in self.in_edges[real_output][real_outputh]
|
340 |
]
|
341 |
+
self.inv_dependencies = {n: [] for n in self.nodes}
|
342 |
for k, v in self.dependencies.items():
|
343 |
for i in v:
|
344 |
self.inv_dependencies[i].append(k)
|
|
|
346 |
for k, i in inputs.items():
|
347 |
self.sizes[k] = i.shape[-1]
|
348 |
self.layers = []
|
349 |
+
# Clean up disconnected nodes.
|
350 |
+
disconnected = set()
|
351 |
+
for node_id in self.nodes:
|
352 |
+
op = self.catalog[self.nodes[node_id].data.title]
|
353 |
+
if len(self.in_edges[node_id]) != len(op.inputs):
|
354 |
+
disconnected.add(node_id)
|
355 |
+
disconnected |= self.all_upstream(node_id)
|
356 |
+
for node_id in disconnected:
|
357 |
+
del self.dependencies[node_id]
|
358 |
+
del self.in_edges[node_id]
|
359 |
+
del self.out_edges[node_id]
|
360 |
+
del self.inv_dependencies[node_id]
|
361 |
+
del self.nodes[node_id]
|
362 |
|
363 |
def all_upstream(self, node: str) -> set[str]:
|
364 |
"""Returns all nodes upstream of a node."""
|
|
|
378 |
|
379 |
def run_node(self, node_id: str) -> None:
|
380 |
"""Adds the layer(s) produced by this node to self.layers."""
|
381 |
+
node = self.nodes[node_id]
|
|
|
|
|
|
|
|
|
|
|
382 |
t = node.data.title
|
383 |
op = self.catalog[t]
|
384 |
p = op.convert_params(node.data.params)
|
|
|
397 |
f"edges leave repeated section '{repeat_id}':\n{affected_nodes - repeated_nodes}"
|
398 |
)
|
399 |
repeated_layers = [e for e in self.layers if e._origin_id in repeated_nodes]
|
400 |
+
assert p["times"] >= 1, f"Cannot repeat {repeat_id} {p['times']} times."
|
401 |
for i in range(p["times"] - 1):
|
402 |
# Copy repeat section's output to repeat section's input.
|
403 |
self.layers.append(
|
lynxkite-graph-analytics/tests/test_pytorch_model_ops.py
CHANGED
@@ -7,11 +7,13 @@ import pytest
|
|
7 |
def make_ws(env, nodes: dict[str, dict], edges: list[tuple[str, str, str, str]]):
|
8 |
ws = workspace.Workspace(env=env)
|
9 |
for id, data in nodes.items():
|
|
|
|
|
10 |
ws.nodes.append(
|
11 |
workspace.WorkspaceNode(
|
12 |
id=id,
|
13 |
type="basic",
|
14 |
-
data=workspace.WorkspaceNodeData(title=
|
15 |
position=workspace.Position(
|
16 |
x=data.get("x", 0),
|
17 |
y=data.get("y", 0),
|
@@ -31,35 +33,86 @@ def make_ws(env, nodes: dict[str, dict], edges: list[tuple[str, str, str, str]])
|
|
31 |
return ws
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
async def test_build_model():
|
35 |
ws = make_ws(
|
36 |
pytorch_model_ops.ENV,
|
37 |
{
|
38 |
-
"emb": {"title": "Input:
|
39 |
"lin": {"title": "Linear", "output_dim": "same"},
|
40 |
-
"act": {"title": "Activation", "type": "
|
41 |
-
"label": {"title": "Input:
|
42 |
"loss": {"title": "MSE loss"},
|
43 |
"optim": {"title": "Optimizer", "type": "SGD", "lr": 0.1},
|
44 |
},
|
45 |
[
|
46 |
-
("emb:
|
47 |
-
("lin:
|
48 |
-
("act:
|
49 |
-
("label:
|
50 |
-
("loss:
|
51 |
],
|
52 |
)
|
53 |
x = torch.rand(100, 4)
|
54 |
y = x + 1
|
55 |
-
m = pytorch_model_ops.build_model(ws, {"
|
56 |
for i in range(1000):
|
57 |
-
loss = m.train({"
|
58 |
assert loss < 0.1
|
59 |
-
o = m.inference({"
|
60 |
-
error = torch.nn.functional.mse_loss(o["
|
61 |
assert error < 0.1
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
if __name__ == "__main__":
|
65 |
pytest.main()
|
|
|
7 |
def make_ws(env, nodes: dict[str, dict], edges: list[tuple[str, str, str, str]]):
|
8 |
ws = workspace.Workspace(env=env)
|
9 |
for id, data in nodes.items():
|
10 |
+
title = data["title"]
|
11 |
+
del data["title"]
|
12 |
ws.nodes.append(
|
13 |
workspace.WorkspaceNode(
|
14 |
id=id,
|
15 |
type="basic",
|
16 |
+
data=workspace.WorkspaceNodeData(title=title, params=data),
|
17 |
position=workspace.Position(
|
18 |
x=data.get("x", 0),
|
19 |
y=data.get("y", 0),
|
|
|
33 |
return ws
|
34 |
|
35 |
|
36 |
+
def summarize_layers(m: pytorch_model_ops.ModelConfig) -> str:
|
37 |
+
return "".join(str(e)[0] for e in m.model)
|
38 |
+
|
39 |
+
|
40 |
+
def summarize_connections(m: pytorch_model_ops.ModelConfig) -> str:
|
41 |
+
return " ".join(
|
42 |
+
"".join(n[0] for n in c.param_names) + "->" + "".join(n[0] for n in c.return_names)
|
43 |
+
for c in m.model._children
|
44 |
+
)
|
45 |
+
|
46 |
+
|
47 |
async def test_build_model():
|
48 |
ws = make_ws(
|
49 |
pytorch_model_ops.ENV,
|
50 |
{
|
51 |
+
"emb": {"title": "Input: tensor"},
|
52 |
"lin": {"title": "Linear", "output_dim": "same"},
|
53 |
+
"act": {"title": "Activation", "type": "Leaky_ReLU"},
|
54 |
+
"label": {"title": "Input: tensor"},
|
55 |
"loss": {"title": "MSE loss"},
|
56 |
"optim": {"title": "Optimizer", "type": "SGD", "lr": 0.1},
|
57 |
},
|
58 |
[
|
59 |
+
("emb:output", "lin:x"),
|
60 |
+
("lin:output", "act:x"),
|
61 |
+
("act:output", "loss:x"),
|
62 |
+
("label:output", "loss:y"),
|
63 |
+
("loss:output", "optim:loss"),
|
64 |
],
|
65 |
)
|
66 |
x = torch.rand(100, 4)
|
67 |
y = x + 1
|
68 |
+
m = pytorch_model_ops.build_model(ws, {"emb_output": x, "label_output": y})
|
69 |
for i in range(1000):
|
70 |
+
loss = m.train({"emb_output": x, "label_output": y})
|
71 |
assert loss < 0.1
|
72 |
+
o = m.inference({"emb_output": x[:1]})
|
73 |
+
error = torch.nn.functional.mse_loss(o["act_output"], x[:1] + 1)
|
74 |
assert error < 0.1
|
75 |
|
76 |
|
77 |
+
async def test_build_model_with_repeat():
|
78 |
+
def repeated_ws(times):
|
79 |
+
return make_ws(
|
80 |
+
pytorch_model_ops.ENV,
|
81 |
+
{
|
82 |
+
"emb": {"title": "Input: tensor"},
|
83 |
+
"lin": {"title": "Linear", "output_dim": "same"},
|
84 |
+
"act": {"title": "Activation", "type": "Leaky_ReLU"},
|
85 |
+
"label": {"title": "Input: tensor"},
|
86 |
+
"loss": {"title": "MSE loss"},
|
87 |
+
"optim": {"title": "Optimizer", "type": "SGD", "lr": 0.1},
|
88 |
+
"repeat": {"title": "Repeat", "times": times, "same_weights": False},
|
89 |
+
},
|
90 |
+
[
|
91 |
+
("emb:output", "lin:x"),
|
92 |
+
("lin:output", "act:x"),
|
93 |
+
("act:output", "loss:x"),
|
94 |
+
("label:output", "loss:y"),
|
95 |
+
("loss:output", "optim:loss"),
|
96 |
+
("repeat:output", "lin:x"),
|
97 |
+
("act:output", "repeat:input"),
|
98 |
+
],
|
99 |
+
)
|
100 |
+
|
101 |
+
# 1 repetition
|
102 |
+
m = pytorch_model_ops.build_model(repeated_ws(1), {})
|
103 |
+
assert summarize_layers(m) == "IL<II"
|
104 |
+
assert summarize_connections(m) == "e->S S->l l->a a->E E->E"
|
105 |
+
|
106 |
+
# 2 repetitions
|
107 |
+
m = pytorch_model_ops.build_model(repeated_ws(2), {})
|
108 |
+
assert summarize_layers(m) == "IL<IL<II"
|
109 |
+
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->E E->E"
|
110 |
+
|
111 |
+
# 3 repetitions
|
112 |
+
m = pytorch_model_ops.build_model(repeated_ws(3), {})
|
113 |
+
assert summarize_layers(m) == "IL<IL<IL<II"
|
114 |
+
assert summarize_connections(m) == "e->S S->l l->a a->S S->l l->a a->S S->l l->a a->E E->E"
|
115 |
+
|
116 |
+
|
117 |
if __name__ == "__main__":
|
118 |
pytest.main()
|