Spaces:
Running
Running
Training and inference.
Browse files- examples/Model definition +334 -0
- examples/Model use +288 -0
- examples/uploads/plus-one-dataset.parquet +0 -0
- lynxkite-core/src/lynxkite/core/ops.py +11 -4
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py +2 -2
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py +48 -12
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py +26 -4
examples/Model definition
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"edges": [
|
3 |
+
{
|
4 |
+
"id": "Input: embedding 1 Linear 1",
|
5 |
+
"source": "Input: embedding 1",
|
6 |
+
"sourceHandle": "x",
|
7 |
+
"target": "Linear 1",
|
8 |
+
"targetHandle": "x"
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"id": "Input: label 1 MSE loss 1",
|
12 |
+
"source": "Input: label 1",
|
13 |
+
"sourceHandle": "y",
|
14 |
+
"target": "MSE loss 1",
|
15 |
+
"targetHandle": "y"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"id": "Linear 1 Activation 2",
|
19 |
+
"source": "Linear 1",
|
20 |
+
"sourceHandle": "x",
|
21 |
+
"target": "Activation 2",
|
22 |
+
"targetHandle": "x"
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": "Activation 2 MSE loss 1",
|
26 |
+
"source": "Activation 2",
|
27 |
+
"sourceHandle": "x",
|
28 |
+
"target": "MSE loss 1",
|
29 |
+
"targetHandle": "x"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"id": "MSE loss 1 Optimizer 2",
|
33 |
+
"source": "MSE loss 1",
|
34 |
+
"sourceHandle": "loss",
|
35 |
+
"target": "Optimizer 2",
|
36 |
+
"targetHandle": "loss"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"env": "PyTorch model",
|
40 |
+
"nodes": [
|
41 |
+
{
|
42 |
+
"data": {
|
43 |
+
"display": null,
|
44 |
+
"error": null,
|
45 |
+
"meta": {
|
46 |
+
"inputs": {},
|
47 |
+
"name": "Input: embedding",
|
48 |
+
"outputs": {
|
49 |
+
"x": {
|
50 |
+
"name": "x",
|
51 |
+
"position": "top",
|
52 |
+
"type": {
|
53 |
+
"type": "tensor"
|
54 |
+
}
|
55 |
+
}
|
56 |
+
},
|
57 |
+
"params": {},
|
58 |
+
"type": "basic"
|
59 |
+
},
|
60 |
+
"params": {},
|
61 |
+
"status": "planned",
|
62 |
+
"title": "Input: embedding"
|
63 |
+
},
|
64 |
+
"dragHandle": ".bg-primary",
|
65 |
+
"height": 200.0,
|
66 |
+
"id": "Input: embedding 1",
|
67 |
+
"position": {
|
68 |
+
"x": 91.0,
|
69 |
+
"y": 266.0
|
70 |
+
},
|
71 |
+
"type": "basic",
|
72 |
+
"width": 200.0
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"data": {
|
76 |
+
"display": null,
|
77 |
+
"error": null,
|
78 |
+
"meta": {
|
79 |
+
"inputs": {
|
80 |
+
"x": {
|
81 |
+
"name": "x",
|
82 |
+
"position": "bottom",
|
83 |
+
"type": {
|
84 |
+
"type": "tensor"
|
85 |
+
}
|
86 |
+
}
|
87 |
+
},
|
88 |
+
"name": "Linear",
|
89 |
+
"outputs": {
|
90 |
+
"x": {
|
91 |
+
"name": "x",
|
92 |
+
"position": "top",
|
93 |
+
"type": {
|
94 |
+
"type": "tensor"
|
95 |
+
}
|
96 |
+
}
|
97 |
+
},
|
98 |
+
"params": {
|
99 |
+
"output_dim": {
|
100 |
+
"default": "same",
|
101 |
+
"name": "output_dim",
|
102 |
+
"type": {
|
103 |
+
"type": "<class 'str'>"
|
104 |
+
}
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"type": "basic"
|
108 |
+
},
|
109 |
+
"params": {
|
110 |
+
"output_dim": "same"
|
111 |
+
},
|
112 |
+
"status": "planned",
|
113 |
+
"title": "Linear"
|
114 |
+
},
|
115 |
+
"dragHandle": ".bg-primary",
|
116 |
+
"height": 200.0,
|
117 |
+
"id": "Linear 1",
|
118 |
+
"position": {
|
119 |
+
"x": 86.0,
|
120 |
+
"y": 33.0
|
121 |
+
},
|
122 |
+
"type": "basic",
|
123 |
+
"width": 200.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"data": {
|
127 |
+
"display": null,
|
128 |
+
"error": null,
|
129 |
+
"meta": {
|
130 |
+
"inputs": {
|
131 |
+
"x": {
|
132 |
+
"name": "x",
|
133 |
+
"position": "bottom",
|
134 |
+
"type": {
|
135 |
+
"type": "tensor"
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"y": {
|
139 |
+
"name": "y",
|
140 |
+
"position": "bottom",
|
141 |
+
"type": {
|
142 |
+
"type": "tensor"
|
143 |
+
}
|
144 |
+
}
|
145 |
+
},
|
146 |
+
"name": "MSE loss",
|
147 |
+
"outputs": {
|
148 |
+
"loss": {
|
149 |
+
"name": "loss",
|
150 |
+
"position": "top",
|
151 |
+
"type": {
|
152 |
+
"type": "tensor"
|
153 |
+
}
|
154 |
+
}
|
155 |
+
},
|
156 |
+
"params": {},
|
157 |
+
"type": "basic"
|
158 |
+
},
|
159 |
+
"params": {},
|
160 |
+
"status": "planned",
|
161 |
+
"title": "MSE loss"
|
162 |
+
},
|
163 |
+
"dragHandle": ".bg-primary",
|
164 |
+
"height": 200.0,
|
165 |
+
"id": "MSE loss 1",
|
166 |
+
"position": {
|
167 |
+
"x": 315.0,
|
168 |
+
"y": -510.0
|
169 |
+
},
|
170 |
+
"type": "basic",
|
171 |
+
"width": 200.0
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"data": {
|
175 |
+
"display": null,
|
176 |
+
"error": null,
|
177 |
+
"meta": {
|
178 |
+
"inputs": {},
|
179 |
+
"name": "Input: label",
|
180 |
+
"outputs": {
|
181 |
+
"y": {
|
182 |
+
"name": "y",
|
183 |
+
"position": "top",
|
184 |
+
"type": {
|
185 |
+
"type": "tensor"
|
186 |
+
}
|
187 |
+
}
|
188 |
+
},
|
189 |
+
"params": {},
|
190 |
+
"type": "basic"
|
191 |
+
},
|
192 |
+
"params": {},
|
193 |
+
"status": "planned",
|
194 |
+
"title": "Input: label"
|
195 |
+
},
|
196 |
+
"dragHandle": ".bg-primary",
|
197 |
+
"height": 200.0,
|
198 |
+
"id": "Input: label 1",
|
199 |
+
"position": {
|
200 |
+
"x": 615.0,
|
201 |
+
"y": -165.0
|
202 |
+
},
|
203 |
+
"type": "basic",
|
204 |
+
"width": 200.0
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"data": {
|
208 |
+
"__execution_delay": 0.0,
|
209 |
+
"collapsed": null,
|
210 |
+
"display": null,
|
211 |
+
"error": null,
|
212 |
+
"meta": {
|
213 |
+
"inputs": {
|
214 |
+
"x": {
|
215 |
+
"name": "x",
|
216 |
+
"position": "bottom",
|
217 |
+
"type": {
|
218 |
+
"type": "tensor"
|
219 |
+
}
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"name": "Activation",
|
223 |
+
"outputs": {
|
224 |
+
"x": {
|
225 |
+
"name": "x",
|
226 |
+
"position": "top",
|
227 |
+
"type": {
|
228 |
+
"type": "tensor"
|
229 |
+
}
|
230 |
+
}
|
231 |
+
},
|
232 |
+
"params": {
|
233 |
+
"type": {
|
234 |
+
"default": "ReLU",
|
235 |
+
"name": "type",
|
236 |
+
"type": {
|
237 |
+
"enum": [
|
238 |
+
"ReLU",
|
239 |
+
"Leaky ReLU",
|
240 |
+
"Tanh",
|
241 |
+
"Mish"
|
242 |
+
]
|
243 |
+
}
|
244 |
+
}
|
245 |
+
},
|
246 |
+
"position": {
|
247 |
+
"x": 419.0,
|
248 |
+
"y": 396.0
|
249 |
+
},
|
250 |
+
"type": "basic"
|
251 |
+
},
|
252 |
+
"params": {
|
253 |
+
"type": "Leaky ReLU"
|
254 |
+
},
|
255 |
+
"status": "planned",
|
256 |
+
"title": "Activation"
|
257 |
+
},
|
258 |
+
"dragHandle": ".bg-primary",
|
259 |
+
"height": 200.0,
|
260 |
+
"id": "Activation 2",
|
261 |
+
"position": {
|
262 |
+
"x": 93.61643829835265,
|
263 |
+
"y": -229.04087132886406
|
264 |
+
},
|
265 |
+
"type": "basic",
|
266 |
+
"width": 200.0
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"data": {
|
270 |
+
"__execution_delay": 0.0,
|
271 |
+
"collapsed": null,
|
272 |
+
"display": null,
|
273 |
+
"error": null,
|
274 |
+
"meta": {
|
275 |
+
"inputs": {
|
276 |
+
"loss": {
|
277 |
+
"name": "loss",
|
278 |
+
"position": "bottom",
|
279 |
+
"type": {
|
280 |
+
"type": "tensor"
|
281 |
+
}
|
282 |
+
}
|
283 |
+
},
|
284 |
+
"name": "Optimizer",
|
285 |
+
"outputs": {},
|
286 |
+
"params": {
|
287 |
+
"lr": {
|
288 |
+
"default": 0.001,
|
289 |
+
"name": "lr",
|
290 |
+
"type": {
|
291 |
+
"type": "<class 'float'>"
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"type": {
|
295 |
+
"default": "AdamW",
|
296 |
+
"name": "type",
|
297 |
+
"type": {
|
298 |
+
"enum": [
|
299 |
+
"AdamW",
|
300 |
+
"Adafactor",
|
301 |
+
"Adagrad",
|
302 |
+
"SGD",
|
303 |
+
"Lion",
|
304 |
+
"Paged AdamW",
|
305 |
+
"Galore AdamW"
|
306 |
+
]
|
307 |
+
}
|
308 |
+
}
|
309 |
+
},
|
310 |
+
"position": {
|
311 |
+
"x": 526.0,
|
312 |
+
"y": 116.0
|
313 |
+
},
|
314 |
+
"type": "basic"
|
315 |
+
},
|
316 |
+
"params": {
|
317 |
+
"lr": "0.1",
|
318 |
+
"type": "SGD"
|
319 |
+
},
|
320 |
+
"status": "planned",
|
321 |
+
"title": "Optimizer"
|
322 |
+
},
|
323 |
+
"dragHandle": ".bg-primary",
|
324 |
+
"height": 200.0,
|
325 |
+
"id": "Optimizer 2",
|
326 |
+
"position": {
|
327 |
+
"x": 305.6132943499785,
|
328 |
+
"y": -804.0094318451224
|
329 |
+
},
|
330 |
+
"type": "basic",
|
331 |
+
"width": 200.0
|
332 |
+
}
|
333 |
+
]
|
334 |
+
}
|
examples/Model use
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"edges": [
|
3 |
+
{
|
4 |
+
"id": "Import Parquet 1 Train/test split 1",
|
5 |
+
"source": "Import Parquet 1",
|
6 |
+
"sourceHandle": "output",
|
7 |
+
"target": "Train/test split 1",
|
8 |
+
"targetHandle": "bundle"
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"id": "Train/test split 1 Train model 3",
|
12 |
+
"source": "Train/test split 1",
|
13 |
+
"sourceHandle": "output",
|
14 |
+
"target": "Train model 3",
|
15 |
+
"targetHandle": "bundle"
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"id": "Train model 3 Model inference 1",
|
19 |
+
"source": "Train model 3",
|
20 |
+
"sourceHandle": "output",
|
21 |
+
"target": "Model inference 1",
|
22 |
+
"targetHandle": "bundle"
|
23 |
+
}
|
24 |
+
],
|
25 |
+
"env": "LynxKite Graph Analytics",
|
26 |
+
"nodes": [
|
27 |
+
{
|
28 |
+
"data": {
|
29 |
+
"__execution_delay": 0.0,
|
30 |
+
"collapsed": null,
|
31 |
+
"display": null,
|
32 |
+
"error": null,
|
33 |
+
"meta": {
|
34 |
+
"inputs": {
|
35 |
+
"bundle": {
|
36 |
+
"name": "bundle",
|
37 |
+
"position": "left",
|
38 |
+
"type": {
|
39 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
40 |
+
}
|
41 |
+
}
|
42 |
+
},
|
43 |
+
"name": "Train/test split",
|
44 |
+
"outputs": {
|
45 |
+
"output": {
|
46 |
+
"name": "output",
|
47 |
+
"position": "right",
|
48 |
+
"type": {
|
49 |
+
"type": "None"
|
50 |
+
}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"params": {
|
54 |
+
"table_name": {
|
55 |
+
"default": null,
|
56 |
+
"name": "table_name",
|
57 |
+
"type": {
|
58 |
+
"type": "<class 'str'>"
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"test_ratio": {
|
62 |
+
"default": 0.1,
|
63 |
+
"name": "test_ratio",
|
64 |
+
"type": {
|
65 |
+
"type": "<class 'float'>"
|
66 |
+
}
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"type": "basic"
|
70 |
+
},
|
71 |
+
"params": {
|
72 |
+
"table_name": "df",
|
73 |
+
"test_ratio": 0.1
|
74 |
+
},
|
75 |
+
"status": "done",
|
76 |
+
"title": "Train/test split"
|
77 |
+
},
|
78 |
+
"dragHandle": ".bg-primary",
|
79 |
+
"height": 282.0,
|
80 |
+
"id": "Train/test split 1",
|
81 |
+
"position": {
|
82 |
+
"x": 345.0,
|
83 |
+
"y": 139.0
|
84 |
+
},
|
85 |
+
"type": "basic",
|
86 |
+
"width": 259.0
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"data": {
|
90 |
+
"__execution_delay": 0.0,
|
91 |
+
"collapsed": null,
|
92 |
+
"display": null,
|
93 |
+
"error": null,
|
94 |
+
"meta": {
|
95 |
+
"inputs": {},
|
96 |
+
"name": "Import Parquet",
|
97 |
+
"outputs": {
|
98 |
+
"output": {
|
99 |
+
"name": "output",
|
100 |
+
"position": "right",
|
101 |
+
"type": {
|
102 |
+
"type": "None"
|
103 |
+
}
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"params": {
|
107 |
+
"filename": {
|
108 |
+
"default": null,
|
109 |
+
"name": "filename",
|
110 |
+
"type": {
|
111 |
+
"type": "<class 'str'>"
|
112 |
+
}
|
113 |
+
}
|
114 |
+
},
|
115 |
+
"type": "basic"
|
116 |
+
},
|
117 |
+
"params": {
|
118 |
+
"filename": "uploads/plus-one-dataset.parquet"
|
119 |
+
},
|
120 |
+
"status": "done",
|
121 |
+
"title": "Import Parquet"
|
122 |
+
},
|
123 |
+
"dragHandle": ".bg-primary",
|
124 |
+
"height": 403.0,
|
125 |
+
"id": "Import Parquet 1",
|
126 |
+
"position": {
|
127 |
+
"x": -166.0,
|
128 |
+
"y": 112.0
|
129 |
+
},
|
130 |
+
"type": "basic",
|
131 |
+
"width": 371.0
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"data": {
|
135 |
+
"__execution_delay": 0.0,
|
136 |
+
"collapsed": null,
|
137 |
+
"display": null,
|
138 |
+
"error": null,
|
139 |
+
"meta": {
|
140 |
+
"inputs": {
|
141 |
+
"bundle": {
|
142 |
+
"name": "bundle",
|
143 |
+
"position": "left",
|
144 |
+
"type": {
|
145 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
146 |
+
}
|
147 |
+
}
|
148 |
+
},
|
149 |
+
"name": "Train model",
|
150 |
+
"outputs": {
|
151 |
+
"output": {
|
152 |
+
"name": "output",
|
153 |
+
"position": "right",
|
154 |
+
"type": {
|
155 |
+
"type": "None"
|
156 |
+
}
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"params": {
|
160 |
+
"epochs": {
|
161 |
+
"default": 1.0,
|
162 |
+
"name": "epochs",
|
163 |
+
"type": {
|
164 |
+
"type": "<class 'int'>"
|
165 |
+
}
|
166 |
+
},
|
167 |
+
"input_mapping": {
|
168 |
+
"default": null,
|
169 |
+
"name": "input_mapping",
|
170 |
+
"type": {
|
171 |
+
"type": "<class 'str'>"
|
172 |
+
}
|
173 |
+
},
|
174 |
+
"model_workspace": {
|
175 |
+
"default": null,
|
176 |
+
"name": "model_workspace",
|
177 |
+
"type": {
|
178 |
+
"type": "<class 'str'>"
|
179 |
+
}
|
180 |
+
},
|
181 |
+
"save_as": {
|
182 |
+
"default": "model",
|
183 |
+
"name": "save_as",
|
184 |
+
"type": {
|
185 |
+
"type": "<class 'str'>"
|
186 |
+
}
|
187 |
+
}
|
188 |
+
},
|
189 |
+
"position": {
|
190 |
+
"x": 675.0,
|
191 |
+
"y": 144.0
|
192 |
+
},
|
193 |
+
"type": "basic"
|
194 |
+
},
|
195 |
+
"params": {
|
196 |
+
"epochs": "1000",
|
197 |
+
"input_mapping": "{\"Input__embedding_1_x\": {\"df\": \"df_train\", \"column\": \"x\"}, \"Input__label_1_y\": {\"df\": \"df_train\", \"column\": \"y\" }}",
|
198 |
+
"model_workspace": "Model definition",
|
199 |
+
"save_as": "model"
|
200 |
+
},
|
201 |
+
"status": "done",
|
202 |
+
"title": "Train model"
|
203 |
+
},
|
204 |
+
"dragHandle": ".bg-primary",
|
205 |
+
"height": 519.0,
|
206 |
+
"id": "Train model 3",
|
207 |
+
"position": {
|
208 |
+
"x": 687.3818749999999,
|
209 |
+
"y": -34.16902777777775
|
210 |
+
},
|
211 |
+
"type": "basic",
|
212 |
+
"width": 640.0
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"data": {
|
216 |
+
"__execution_delay": 0.0,
|
217 |
+
"collapsed": null,
|
218 |
+
"display": null,
|
219 |
+
"error": null,
|
220 |
+
"meta": {
|
221 |
+
"inputs": {
|
222 |
+
"bundle": {
|
223 |
+
"name": "bundle",
|
224 |
+
"position": "left",
|
225 |
+
"type": {
|
226 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
227 |
+
}
|
228 |
+
}
|
229 |
+
},
|
230 |
+
"name": "Model inference",
|
231 |
+
"outputs": {
|
232 |
+
"output": {
|
233 |
+
"name": "output",
|
234 |
+
"position": "right",
|
235 |
+
"type": {
|
236 |
+
"type": "None"
|
237 |
+
}
|
238 |
+
}
|
239 |
+
},
|
240 |
+
"params": {
|
241 |
+
"input_mapping": {
|
242 |
+
"default": "",
|
243 |
+
"name": "input_mapping",
|
244 |
+
"type": {
|
245 |
+
"type": "<class 'str'>"
|
246 |
+
}
|
247 |
+
},
|
248 |
+
"model_name": {
|
249 |
+
"default": "model",
|
250 |
+
"name": "model_name",
|
251 |
+
"type": {
|
252 |
+
"type": "<class 'str'>"
|
253 |
+
}
|
254 |
+
},
|
255 |
+
"output_mapping": {
|
256 |
+
"default": "",
|
257 |
+
"name": "output_mapping",
|
258 |
+
"type": {
|
259 |
+
"type": "<class 'str'>"
|
260 |
+
}
|
261 |
+
}
|
262 |
+
},
|
263 |
+
"position": {
|
264 |
+
"x": 506.0,
|
265 |
+
"y": 115.0
|
266 |
+
},
|
267 |
+
"type": "basic"
|
268 |
+
},
|
269 |
+
"params": {
|
270 |
+
"input_mapping": "{\"Input__embedding_1_x\": {\"df\": \"df_test\", \"column\": \"x\"}}",
|
271 |
+
"model_name": "model",
|
272 |
+
"output_mapping": "{\"Activation_2_x\": {\"df\": \"df_test\", \"column\": \"predicted\"}}"
|
273 |
+
},
|
274 |
+
"status": "done",
|
275 |
+
"title": "Model inference"
|
276 |
+
},
|
277 |
+
"dragHandle": ".bg-primary",
|
278 |
+
"height": 429.0,
|
279 |
+
"id": "Model inference 1",
|
280 |
+
"position": {
|
281 |
+
"x": 1445.5664910683593,
|
282 |
+
"y": 12.075943590382515
|
283 |
+
},
|
284 |
+
"type": "basic",
|
285 |
+
"width": 410.0
|
286 |
+
}
|
287 |
+
]
|
288 |
+
}
|
examples/uploads/plus-one-dataset.parquet
ADDED
Binary file (7.54 kB). View file
|
|
lynxkite-core/src/lynxkite/core/ops.py
CHANGED
@@ -61,7 +61,7 @@ class Parameter(BaseConfig):
|
|
61 |
@staticmethod
|
62 |
def options(name, options, default=None):
|
63 |
e = enum.Enum(f"OptionsFor_{name}", options)
|
64 |
-
return Parameter.basic(name,
|
65 |
|
66 |
@staticmethod
|
67 |
def collapsed(name, default, type=None):
|
@@ -154,9 +154,7 @@ class Op(BaseConfig):
|
|
154 |
|
155 |
def __call__(self, *inputs, **params):
|
156 |
# Convert parameters.
|
157 |
-
|
158 |
-
if p in self.params:
|
159 |
-
params[p] = _param_to_type(p, params[p], self.params[p].type)
|
160 |
res = self.func(*inputs, **params)
|
161 |
if not isinstance(res, Result):
|
162 |
# Automatically wrap the result in a Result object, if it isn't already.
|
@@ -172,6 +170,15 @@ class Op(BaseConfig):
|
|
172 |
res.display = res.output
|
173 |
return res
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
def op(env: str, name: str, *, view="basic", outputs=None, params=None):
|
177 |
"""Decorator for defining an operation."""
|
|
|
61 |
@staticmethod
|
62 |
def options(name, options, default=None):
|
63 |
e = enum.Enum(f"OptionsFor_{name}", options)
|
64 |
+
return Parameter.basic(name, default or options[0], e)
|
65 |
|
66 |
@staticmethod
|
67 |
def collapsed(name, default, type=None):
|
|
|
154 |
|
155 |
def __call__(self, *inputs, **params):
|
156 |
# Convert parameters.
|
157 |
+
params = self.convert_params(params)
|
|
|
|
|
158 |
res = self.func(*inputs, **params)
|
159 |
if not isinstance(res, Result):
|
160 |
# Automatically wrap the result in a Result object, if it isn't already.
|
|
|
170 |
res.display = res.output
|
171 |
return res
|
172 |
|
173 |
+
def convert_params(self, params):
|
174 |
+
"""Returns the parameters converted to the expected type."""
|
175 |
+
res = {}
|
176 |
+
for p in params:
|
177 |
+
res[p] = params[p]
|
178 |
+
if p in self.params:
|
179 |
+
res[p] = _param_to_type(p, params[p], self.params[p].type)
|
180 |
+
return res
|
181 |
+
|
182 |
|
183 |
def op(env: str, name: str, *, view="basic", outputs=None, params=None):
|
184 |
"""Decorator for defining an operation."""
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py
CHANGED
@@ -42,7 +42,7 @@ class Bundle:
|
|
42 |
|
43 |
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
|
44 |
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
|
45 |
-
other: dict[str, typing.Any] =
|
46 |
|
47 |
@classmethod
|
48 |
def from_nx(cls, graph: nx.Graph):
|
@@ -102,7 +102,7 @@ class Bundle:
|
|
102 |
return Bundle(
|
103 |
dfs=dict(self.dfs),
|
104 |
relations=list(self.relations),
|
105 |
-
other=dict(self.other)
|
106 |
)
|
107 |
|
108 |
def to_dict(self, limit: int = 100):
|
|
|
42 |
|
43 |
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
|
44 |
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
|
45 |
+
other: dict[str, typing.Any] = dataclasses.field(default_factory=dict)
|
46 |
|
47 |
@classmethod
|
48 |
def from_nx(cls, graph: nx.Graph):
|
|
|
102 |
return Bundle(
|
103 |
dfs=dict(self.dfs),
|
104 |
relations=list(self.relations),
|
105 |
+
other=dict(self.other),
|
106 |
)
|
107 |
|
108 |
def to_dict(self, limit: int = 100):
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py
CHANGED
@@ -2,10 +2,14 @@
|
|
2 |
|
3 |
import enum
|
4 |
import os
|
|
|
5 |
import fsspec
|
6 |
from lynxkite.core import ops
|
7 |
from collections import deque
|
8 |
-
|
|
|
|
|
|
|
9 |
import grandcypher
|
10 |
import joblib
|
11 |
import matplotlib
|
@@ -344,10 +348,13 @@ def create_graph(bundle: core.Bundle, *, relations: str = None) -> core.Bundle:
|
|
344 |
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
|
345 |
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
|
|
351 |
|
352 |
|
353 |
@op("Biomedical foundation graph (PLACEHOLDER)")
|
@@ -358,25 +365,54 @@ def biomedical_foundation_graph(*, filter_nodes: str):
|
|
358 |
|
359 |
@op("Train model")
|
360 |
def train_model(
|
361 |
-
bundle: core.Bundle,
|
|
|
|
|
|
|
|
|
|
|
362 |
):
|
363 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
|
366 |
|
367 |
@op("Model inference")
|
368 |
def model_inference(
|
369 |
bundle: core.Bundle,
|
370 |
*,
|
371 |
-
model_name: str,
|
372 |
-
|
373 |
-
|
374 |
):
|
375 |
"""Executes a trained model."""
|
376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
|
379 |
@op("Train/test split")
|
380 |
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
|
381 |
"""Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
import enum
|
4 |
import os
|
5 |
+
import pathlib
|
6 |
import fsspec
|
7 |
from lynxkite.core import ops
|
8 |
from collections import deque
|
9 |
+
|
10 |
+
from tqdm import tqdm
|
11 |
+
from . import core, pytorch_model_ops
|
12 |
+
from lynxkite.core import workspace
|
13 |
import grandcypher
|
14 |
import joblib
|
15 |
import matplotlib
|
|
|
348 |
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
|
349 |
|
350 |
|
351 |
+
def load_ws(model_workspace: str):
|
352 |
+
cwd = pathlib.Path()
|
353 |
+
path = cwd / model_workspace
|
354 |
+
assert path.is_relative_to(cwd)
|
355 |
+
assert path.exists(), f"Workspace {path} does not exist"
|
356 |
+
ws = workspace.load(path)
|
357 |
+
return ws
|
358 |
|
359 |
|
360 |
@op("Biomedical foundation graph (PLACEHOLDER)")
|
|
|
365 |
|
366 |
@op("Train model")
|
367 |
def train_model(
|
368 |
+
bundle: core.Bundle,
|
369 |
+
*,
|
370 |
+
model_workspace: str,
|
371 |
+
input_mapping: str,
|
372 |
+
epochs: int = 1,
|
373 |
+
save_as: str = "model",
|
374 |
):
|
375 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
376 |
+
ws = load_ws(model_workspace)
|
377 |
+
input_mapping = json.loads(input_mapping)
|
378 |
+
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
379 |
+
m = pytorch_model_ops.build_model(ws, inputs)
|
380 |
+
t = tqdm(range(epochs), desc="Training model")
|
381 |
+
for _ in t:
|
382 |
+
loss = m.train(inputs)
|
383 |
+
t.set_postfix({"loss": loss})
|
384 |
+
bundle = bundle.copy()
|
385 |
+
bundle.other[save_as] = m
|
386 |
+
return bundle
|
387 |
|
388 |
|
389 |
@op("Model inference")
|
390 |
def model_inference(
|
391 |
bundle: core.Bundle,
|
392 |
*,
|
393 |
+
model_name: str = "model",
|
394 |
+
input_mapping: str = "",
|
395 |
+
output_mapping: str = "",
|
396 |
):
|
397 |
"""Executes a trained model."""
|
398 |
+
m = bundle.other[model_name]
|
399 |
+
input_mapping = json.loads(input_mapping)
|
400 |
+
output_mapping = json.loads(output_mapping)
|
401 |
+
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
402 |
+
outputs = m.inference(inputs)
|
403 |
+
bundle = bundle.copy()
|
404 |
+
for k, v in output_mapping.items():
|
405 |
+
bundle.dfs[v["df"]][v["column"]] = outputs[k].detach().numpy().tolist()
|
406 |
+
return bundle
|
407 |
|
408 |
|
409 |
@op("Train/test split")
|
410 |
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
|
411 |
"""Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
|
412 |
+
df = bundle.dfs[table_name]
|
413 |
+
test = df.sample(frac=test_ratio)
|
414 |
+
train = df.drop(test.index)
|
415 |
+
bundle = bundle.copy()
|
416 |
+
bundle.dfs[f"{table_name}_train"] = train
|
417 |
+
bundle.dfs[f"{table_name}_test"] = test
|
418 |
+
return bundle
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
@@ -6,6 +6,7 @@ from lynxkite.core.ops import Parameter as P
|
|
6 |
import torch
|
7 |
import torch_geometric as pyg
|
8 |
from dataclasses import dataclass
|
|
|
9 |
|
10 |
ENV = "PyTorch model"
|
11 |
|
@@ -162,11 +163,18 @@ class ModelConfig:
|
|
162 |
self.optimizer.step()
|
163 |
return loss.item()
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
def build_model(
|
167 |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
|
168 |
) -> ModelConfig:
|
169 |
"""Builds the model described in the workspace."""
|
|
|
170 |
optimizers = []
|
171 |
nodes = {}
|
172 |
for node in ws.nodes:
|
@@ -197,7 +205,8 @@ def build_model(
|
|
197 |
for node_id in ts.static_order():
|
198 |
node = nodes[node_id]
|
199 |
t = node.data.title
|
200 |
-
|
|
|
201 |
for b in dependencies[node_id]:
|
202 |
if b in in_loss:
|
203 |
in_loss.add(node_id)
|
@@ -216,7 +225,9 @@ def build_model(
|
|
216 |
[(ib, ih)] = edges[node_id, "x"]
|
217 |
i = _to_id(ib) + "_" + ih
|
218 |
used_inputs.add(i)
|
219 |
-
f = getattr(
|
|
|
|
|
220 |
ls.append((f, f"{i} -> {nid}_x"))
|
221 |
sizes[f"{nid}_x"] = sizes[i]
|
222 |
case "MSE loss":
|
@@ -248,7 +259,18 @@ def build_model(
|
|
248 |
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
|
249 |
)
|
250 |
# Create optimizer.
|
251 |
-
|
252 |
-
|
|
|
253 |
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
|
254 |
return ModelConfig(**cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import torch
|
7 |
import torch_geometric as pyg
|
8 |
from dataclasses import dataclass
|
9 |
+
from . import core
|
10 |
|
11 |
ENV = "PyTorch model"
|
12 |
|
|
|
163 |
self.optimizer.step()
|
164 |
return loss.item()
|
165 |
|
166 |
+
def copy(self):
|
167 |
+
"""Returns a copy of the model."""
|
168 |
+
c = super().copy()
|
169 |
+
c.model = self.model.copy()
|
170 |
+
return c
|
171 |
+
|
172 |
|
173 |
def build_model(
|
174 |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
|
175 |
) -> ModelConfig:
|
176 |
"""Builds the model described in the workspace."""
|
177 |
+
catalog = ops.CATALOGS[ENV]
|
178 |
optimizers = []
|
179 |
nodes = {}
|
180 |
for node in ws.nodes:
|
|
|
205 |
for node_id in ts.static_order():
|
206 |
node = nodes[node_id]
|
207 |
t = node.data.title
|
208 |
+
op = catalog[t]
|
209 |
+
p = op.convert_params(node.data.params)
|
210 |
for b in dependencies[node_id]:
|
211 |
if b in in_loss:
|
212 |
in_loss.add(node_id)
|
|
|
225 |
[(ib, ih)] = edges[node_id, "x"]
|
226 |
i = _to_id(ib) + "_" + ih
|
227 |
used_inputs.add(i)
|
228 |
+
f = getattr(
|
229 |
+
torch.nn.functional, p["type"].name.lower().replace(" ", "_")
|
230 |
+
)
|
231 |
ls.append((f, f"{i} -> {nid}_x"))
|
232 |
sizes[f"{nid}_x"] = sizes[i]
|
233 |
case "MSE loss":
|
|
|
259 |
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
|
260 |
)
|
261 |
# Create optimizer.
|
262 |
+
op = catalog["Optimizer"]
|
263 |
+
p = op.convert_params(nodes[optimizer].data.params)
|
264 |
+
o = getattr(torch.optim, p["type"].name)
|
265 |
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
|
266 |
return ModelConfig(**cfg)
|
267 |
+
|
268 |
+
|
269 |
+
def to_tensors(b: core.Bundle, m: dict[str, dict]) -> dict[str, torch.Tensor]:
|
270 |
+
"""Converts a tensor to the correct type for PyTorch."""
|
271 |
+
tensors = {}
|
272 |
+
for k, v in m.items():
|
273 |
+
tensors[k] = torch.tensor(
|
274 |
+
b.dfs[v["df"]][v["column"]].to_list(), dtype=torch.float32
|
275 |
+
)
|
276 |
+
return tensors
|