Spaces:
Running
Running
Each op makes its own layer. #107
Browse files
examples/Model definition
CHANGED
@@ -1,52 +1,52 @@
|
|
1 |
{
|
2 |
"edges": [
|
3 |
{
|
4 |
-
"id": "
|
5 |
-
"source": "
|
6 |
-
"sourceHandle": "
|
7 |
-
"target": "
|
8 |
-
"targetHandle": "
|
9 |
-
},
|
10 |
-
{
|
11 |
-
"id": "Input: label 1 MSE loss 1",
|
12 |
-
"source": "Input: label 1",
|
13 |
-
"sourceHandle": "y",
|
14 |
-
"target": "MSE loss 1",
|
15 |
-
"targetHandle": "y"
|
16 |
},
|
17 |
{
|
18 |
-
"id": "
|
19 |
-
"source": "
|
20 |
-
"sourceHandle": "
|
21 |
-
"target": "
|
22 |
"targetHandle": "x"
|
23 |
},
|
24 |
{
|
25 |
-
"id": "Activation
|
26 |
-
"source": "Activation
|
27 |
-
"sourceHandle": "
|
28 |
"target": "MSE loss 1",
|
29 |
"targetHandle": "x"
|
30 |
},
|
31 |
{
|
32 |
-
"id": "
|
33 |
-
"source": "
|
34 |
-
"sourceHandle": "
|
35 |
-
"target": "
|
36 |
-
"targetHandle": "
|
37 |
},
|
38 |
{
|
39 |
-
"id": "Activation
|
40 |
-
"source": "Activation
|
41 |
-
"sourceHandle": "
|
42 |
"target": "Repeat 1",
|
43 |
"targetHandle": "input"
|
44 |
},
|
45 |
{
|
46 |
-
"id": "
|
47 |
-
"source": "
|
48 |
-
"sourceHandle": "
|
49 |
-
"target": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
"targetHandle": "x"
|
51 |
}
|
52 |
],
|
@@ -58,11 +58,26 @@
|
|
58 |
"error": null,
|
59 |
"input_metadata": null,
|
60 |
"meta": {
|
61 |
-
"inputs": {
|
62 |
-
"name": "Input: embedding",
|
63 |
-
"outputs": {
|
64 |
"x": {
|
65 |
"name": "x",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
"position": "top",
|
67 |
"type": {
|
68 |
"type": "tensor"
|
@@ -74,115 +89,138 @@
|
|
74 |
},
|
75 |
"params": {},
|
76 |
"status": "planned",
|
77 |
-
"title": "
|
78 |
},
|
79 |
"dragHandle": ".bg-primary",
|
80 |
"height": 200.0,
|
81 |
-
"id": "
|
82 |
"position": {
|
83 |
-
"x":
|
84 |
-
"y":
|
85 |
},
|
86 |
"type": "basic",
|
87 |
"width": 200.0
|
88 |
},
|
89 |
{
|
90 |
"data": {
|
|
|
|
|
91 |
"display": null,
|
92 |
"error": null,
|
93 |
"input_metadata": null,
|
94 |
"meta": {
|
95 |
"inputs": {
|
96 |
-
"
|
97 |
-
"name": "
|
98 |
"position": "bottom",
|
99 |
"type": {
|
100 |
"type": "tensor"
|
101 |
}
|
102 |
}
|
103 |
},
|
104 |
-
"name": "
|
105 |
-
"outputs": {
|
106 |
-
|
107 |
-
|
108 |
-
"
|
|
|
109 |
"type": {
|
110 |
-
"type": "
|
111 |
}
|
112 |
-
}
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
"default": "same",
|
117 |
-
"name": "output_dim",
|
118 |
"type": {
|
119 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
}
|
121 |
}
|
122 |
},
|
123 |
"type": "basic"
|
124 |
},
|
125 |
"params": {
|
126 |
-
"
|
|
|
127 |
},
|
128 |
"status": "planned",
|
129 |
-
"title": "
|
130 |
},
|
131 |
"dragHandle": ".bg-primary",
|
132 |
-
"height":
|
133 |
-
"id": "
|
134 |
"position": {
|
135 |
-
"x":
|
136 |
-
"y":
|
137 |
},
|
138 |
"type": "basic",
|
139 |
-
"width":
|
140 |
},
|
141 |
{
|
142 |
"data": {
|
|
|
|
|
143 |
"display": null,
|
144 |
"error": null,
|
145 |
"input_metadata": null,
|
146 |
"meta": {
|
147 |
"inputs": {
|
148 |
-
"
|
149 |
-
"name": "
|
150 |
-
"position": "
|
151 |
"type": {
|
152 |
"type": "tensor"
|
153 |
}
|
154 |
-
}
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
157 |
"position": "bottom",
|
158 |
"type": {
|
159 |
"type": "tensor"
|
160 |
}
|
161 |
}
|
162 |
},
|
163 |
-
"
|
164 |
-
|
165 |
-
|
166 |
-
"name": "
|
167 |
-
"position": "top",
|
168 |
"type": {
|
169 |
-
"type": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
}
|
171 |
}
|
172 |
},
|
173 |
-
"params": {},
|
174 |
"type": "basic"
|
175 |
},
|
176 |
-
"params": {
|
|
|
|
|
|
|
177 |
"status": "planned",
|
178 |
-
"title": "
|
179 |
},
|
180 |
"dragHandle": ".bg-primary",
|
181 |
"height": 200.0,
|
182 |
-
"id": "
|
183 |
"position": {
|
184 |
-
"x":
|
185 |
-
"y": -
|
186 |
},
|
187 |
"type": "basic",
|
188 |
"width": 200.0
|
@@ -193,30 +231,48 @@
|
|
193 |
"error": null,
|
194 |
"input_metadata": null,
|
195 |
"meta": {
|
196 |
-
"inputs": {
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
"outputs": {
|
199 |
-
"
|
200 |
-
"name": "
|
201 |
"position": "top",
|
202 |
"type": {
|
203 |
-
"type": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
}
|
205 |
}
|
206 |
},
|
207 |
-
"params": {},
|
208 |
"type": "basic"
|
209 |
},
|
210 |
-
"params": {
|
|
|
|
|
211 |
"status": "planned",
|
212 |
-
"title": "
|
213 |
},
|
214 |
"dragHandle": ".bg-primary",
|
215 |
"height": 200.0,
|
216 |
-
"id": "
|
217 |
"position": {
|
218 |
-
"x":
|
219 |
-
"y":
|
220 |
},
|
221 |
"type": "basic",
|
222 |
"width": 200.0
|
@@ -234,17 +290,17 @@
|
|
234 |
"name": "x",
|
235 |
"position": "bottom",
|
236 |
"type": {
|
237 |
-
"type": "
|
238 |
}
|
239 |
}
|
240 |
},
|
241 |
"name": "Activation",
|
242 |
"outputs": {
|
243 |
-
"
|
244 |
-
"name": "
|
245 |
"position": "top",
|
246 |
"type": {
|
247 |
-
"type": "
|
248 |
}
|
249 |
}
|
250 |
},
|
@@ -255,27 +311,31 @@
|
|
255 |
"type": {
|
256 |
"enum": [
|
257 |
"ReLU",
|
258 |
-
"
|
259 |
"Tanh",
|
260 |
"Mish"
|
261 |
]
|
262 |
}
|
263 |
}
|
264 |
},
|
|
|
|
|
|
|
|
|
265 |
"type": "basic"
|
266 |
},
|
267 |
"params": {
|
268 |
-
"type": "
|
269 |
},
|
270 |
"status": "planned",
|
271 |
"title": "Activation"
|
272 |
},
|
273 |
"dragHandle": ".bg-primary",
|
274 |
"height": 200.0,
|
275 |
-
"id": "Activation
|
276 |
"position": {
|
277 |
-
"x":
|
278 |
-
"y": -
|
279 |
},
|
280 |
"type": "basic",
|
281 |
"width": 200.0
|
@@ -288,56 +348,44 @@
|
|
288 |
"error": null,
|
289 |
"input_metadata": null,
|
290 |
"meta": {
|
291 |
-
"inputs": {
|
292 |
-
|
293 |
-
|
294 |
-
|
|
|
|
|
295 |
"type": {
|
296 |
"type": "tensor"
|
297 |
}
|
298 |
}
|
299 |
},
|
300 |
-
"name": "Optimizer",
|
301 |
-
"outputs": {},
|
302 |
"params": {
|
303 |
-
"
|
304 |
-
"default":
|
305 |
-
"name": "
|
306 |
-
"type": {
|
307 |
-
"type": "<class 'float'>"
|
308 |
-
}
|
309 |
-
},
|
310 |
-
"type": {
|
311 |
-
"default": "AdamW",
|
312 |
-
"name": "type",
|
313 |
"type": {
|
314 |
-
"
|
315 |
-
"AdamW",
|
316 |
-
"Adafactor",
|
317 |
-
"Adagrad",
|
318 |
-
"SGD",
|
319 |
-
"Lion",
|
320 |
-
"Paged AdamW",
|
321 |
-
"Galore AdamW"
|
322 |
-
]
|
323 |
}
|
324 |
}
|
325 |
},
|
|
|
|
|
|
|
|
|
326 |
"type": "basic"
|
327 |
},
|
328 |
"params": {
|
329 |
-
"
|
330 |
-
"type": "SGD"
|
331 |
},
|
332 |
"status": "planned",
|
333 |
-
"title": "
|
334 |
},
|
335 |
"dragHandle": ".bg-primary",
|
336 |
"height": 200.0,
|
337 |
-
"id": "
|
338 |
"position": {
|
339 |
-
"x":
|
340 |
-
"y":
|
341 |
},
|
342 |
"type": "basic",
|
343 |
"width": 200.0
|
@@ -350,60 +398,44 @@
|
|
350 |
"error": null,
|
351 |
"input_metadata": null,
|
352 |
"meta": {
|
353 |
-
"inputs": {
|
354 |
-
|
355 |
-
"name": "input",
|
356 |
-
"position": "top",
|
357 |
-
"type": {
|
358 |
-
"type": "tensor"
|
359 |
-
}
|
360 |
-
}
|
361 |
-
},
|
362 |
-
"name": "Repeat",
|
363 |
"outputs": {
|
364 |
-
"
|
365 |
-
"name": "
|
366 |
-
"position": "
|
367 |
"type": {
|
368 |
"type": "tensor"
|
369 |
}
|
370 |
}
|
371 |
},
|
372 |
"params": {
|
373 |
-
"
|
374 |
-
"default":
|
375 |
-
"name": "
|
376 |
-
"type": {
|
377 |
-
"type": "<class 'bool'>"
|
378 |
-
}
|
379 |
-
},
|
380 |
-
"times": {
|
381 |
-
"default": 1.0,
|
382 |
-
"name": "times",
|
383 |
"type": {
|
384 |
-
"type": "
|
385 |
}
|
386 |
}
|
387 |
},
|
388 |
"position": {
|
389 |
-
"x":
|
390 |
-
"y":
|
391 |
},
|
392 |
"type": "basic"
|
393 |
},
|
394 |
"params": {
|
395 |
-
"
|
396 |
-
"times": "2"
|
397 |
},
|
398 |
"status": "planned",
|
399 |
-
"title": "
|
400 |
},
|
401 |
"dragHandle": ".bg-primary",
|
402 |
"height": 200.0,
|
403 |
-
"id": "
|
404 |
"position": {
|
405 |
-
"x":
|
406 |
-
"y": -
|
407 |
},
|
408 |
"type": "basic",
|
409 |
"width": 200.0
|
|
|
1 |
{
|
2 |
"edges": [
|
3 |
{
|
4 |
+
"id": "MSE loss 1 Optimizer 2",
|
5 |
+
"source": "MSE loss 1",
|
6 |
+
"sourceHandle": "loss",
|
7 |
+
"target": "Optimizer 2",
|
8 |
+
"targetHandle": "loss"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
},
|
10 |
{
|
11 |
+
"id": "Repeat 1 Linear 2",
|
12 |
+
"source": "Repeat 1",
|
13 |
+
"sourceHandle": "output",
|
14 |
+
"target": "Linear 2",
|
15 |
"targetHandle": "x"
|
16 |
},
|
17 |
{
|
18 |
+
"id": "Activation 1 MSE loss 1",
|
19 |
+
"source": "Activation 1",
|
20 |
+
"sourceHandle": "output",
|
21 |
"target": "MSE loss 1",
|
22 |
"targetHandle": "x"
|
23 |
},
|
24 |
{
|
25 |
+
"id": "Linear 2 Activation 1",
|
26 |
+
"source": "Linear 2",
|
27 |
+
"sourceHandle": "output",
|
28 |
+
"target": "Activation 1",
|
29 |
+
"targetHandle": "x"
|
30 |
},
|
31 |
{
|
32 |
+
"id": "Activation 1 Repeat 1",
|
33 |
+
"source": "Activation 1",
|
34 |
+
"sourceHandle": "output",
|
35 |
"target": "Repeat 1",
|
36 |
"targetHandle": "input"
|
37 |
},
|
38 |
{
|
39 |
+
"id": "Input: tensor 3 MSE loss 1",
|
40 |
+
"source": "Input: tensor 3",
|
41 |
+
"sourceHandle": "x",
|
42 |
+
"target": "MSE loss 1",
|
43 |
+
"targetHandle": "y"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"id": "Input: tensor 1 Linear 2",
|
47 |
+
"source": "Input: tensor 1",
|
48 |
+
"sourceHandle": "x",
|
49 |
+
"target": "Linear 2",
|
50 |
"targetHandle": "x"
|
51 |
}
|
52 |
],
|
|
|
58 |
"error": null,
|
59 |
"input_metadata": null,
|
60 |
"meta": {
|
61 |
+
"inputs": {
|
|
|
|
|
62 |
"x": {
|
63 |
"name": "x",
|
64 |
+
"position": "bottom",
|
65 |
+
"type": {
|
66 |
+
"type": "tensor"
|
67 |
+
}
|
68 |
+
},
|
69 |
+
"y": {
|
70 |
+
"name": "y",
|
71 |
+
"position": "bottom",
|
72 |
+
"type": {
|
73 |
+
"type": "tensor"
|
74 |
+
}
|
75 |
+
}
|
76 |
+
},
|
77 |
+
"name": "MSE loss",
|
78 |
+
"outputs": {
|
79 |
+
"loss": {
|
80 |
+
"name": "loss",
|
81 |
"position": "top",
|
82 |
"type": {
|
83 |
"type": "tensor"
|
|
|
89 |
},
|
90 |
"params": {},
|
91 |
"status": "planned",
|
92 |
+
"title": "MSE loss"
|
93 |
},
|
94 |
"dragHandle": ".bg-primary",
|
95 |
"height": 200.0,
|
96 |
+
"id": "MSE loss 1",
|
97 |
"position": {
|
98 |
+
"x": 315.0,
|
99 |
+
"y": -510.0
|
100 |
},
|
101 |
"type": "basic",
|
102 |
"width": 200.0
|
103 |
},
|
104 |
{
|
105 |
"data": {
|
106 |
+
"__execution_delay": 0.0,
|
107 |
+
"collapsed": null,
|
108 |
"display": null,
|
109 |
"error": null,
|
110 |
"input_metadata": null,
|
111 |
"meta": {
|
112 |
"inputs": {
|
113 |
+
"loss": {
|
114 |
+
"name": "loss",
|
115 |
"position": "bottom",
|
116 |
"type": {
|
117 |
"type": "tensor"
|
118 |
}
|
119 |
}
|
120 |
},
|
121 |
+
"name": "Optimizer",
|
122 |
+
"outputs": {},
|
123 |
+
"params": {
|
124 |
+
"lr": {
|
125 |
+
"default": 0.001,
|
126 |
+
"name": "lr",
|
127 |
"type": {
|
128 |
+
"type": "<class 'float'>"
|
129 |
}
|
130 |
+
},
|
131 |
+
"type": {
|
132 |
+
"default": "AdamW",
|
133 |
+
"name": "type",
|
|
|
|
|
134 |
"type": {
|
135 |
+
"enum": [
|
136 |
+
"AdamW",
|
137 |
+
"Adafactor",
|
138 |
+
"Adagrad",
|
139 |
+
"SGD",
|
140 |
+
"Lion",
|
141 |
+
"Paged AdamW",
|
142 |
+
"Galore AdamW"
|
143 |
+
]
|
144 |
}
|
145 |
}
|
146 |
},
|
147 |
"type": "basic"
|
148 |
},
|
149 |
"params": {
|
150 |
+
"lr": "0.1",
|
151 |
+
"type": "SGD"
|
152 |
},
|
153 |
"status": "planned",
|
154 |
+
"title": "Optimizer"
|
155 |
},
|
156 |
"dragHandle": ".bg-primary",
|
157 |
+
"height": 250.0,
|
158 |
+
"id": "Optimizer 2",
|
159 |
"position": {
|
160 |
+
"x": 292.3983313429414,
|
161 |
+
"y": -853.8015246037802
|
162 |
},
|
163 |
"type": "basic",
|
164 |
+
"width": 232.0
|
165 |
},
|
166 |
{
|
167 |
"data": {
|
168 |
+
"__execution_delay": 0.0,
|
169 |
+
"collapsed": null,
|
170 |
"display": null,
|
171 |
"error": null,
|
172 |
"input_metadata": null,
|
173 |
"meta": {
|
174 |
"inputs": {
|
175 |
+
"input": {
|
176 |
+
"name": "input",
|
177 |
+
"position": "top",
|
178 |
"type": {
|
179 |
"type": "tensor"
|
180 |
}
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"name": "Repeat",
|
184 |
+
"outputs": {
|
185 |
+
"output": {
|
186 |
+
"name": "output",
|
187 |
"position": "bottom",
|
188 |
"type": {
|
189 |
"type": "tensor"
|
190 |
}
|
191 |
}
|
192 |
},
|
193 |
+
"params": {
|
194 |
+
"same_weights": {
|
195 |
+
"default": false,
|
196 |
+
"name": "same_weights",
|
|
|
197 |
"type": {
|
198 |
+
"type": "<class 'bool'>"
|
199 |
+
}
|
200 |
+
},
|
201 |
+
"times": {
|
202 |
+
"default": 1.0,
|
203 |
+
"name": "times",
|
204 |
+
"type": {
|
205 |
+
"type": "<class 'int'>"
|
206 |
}
|
207 |
}
|
208 |
},
|
|
|
209 |
"type": "basic"
|
210 |
},
|
211 |
+
"params": {
|
212 |
+
"same_weights": false,
|
213 |
+
"times": "3"
|
214 |
+
},
|
215 |
"status": "planned",
|
216 |
+
"title": "Repeat"
|
217 |
},
|
218 |
"dragHandle": ".bg-primary",
|
219 |
"height": 200.0,
|
220 |
+
"id": "Repeat 1",
|
221 |
"position": {
|
222 |
+
"x": -180.0,
|
223 |
+
"y": -90.0
|
224 |
},
|
225 |
"type": "basic",
|
226 |
"width": 200.0
|
|
|
231 |
"error": null,
|
232 |
"input_metadata": null,
|
233 |
"meta": {
|
234 |
+
"inputs": {
|
235 |
+
"x": {
|
236 |
+
"name": "x",
|
237 |
+
"position": "bottom",
|
238 |
+
"type": {
|
239 |
+
"type": "<class 'inspect._empty'>"
|
240 |
+
}
|
241 |
+
}
|
242 |
+
},
|
243 |
+
"name": "Linear",
|
244 |
"outputs": {
|
245 |
+
"output": {
|
246 |
+
"name": "output",
|
247 |
"position": "top",
|
248 |
"type": {
|
249 |
+
"type": "None"
|
250 |
+
}
|
251 |
+
}
|
252 |
+
},
|
253 |
+
"params": {
|
254 |
+
"output_dim": {
|
255 |
+
"default": "same",
|
256 |
+
"name": "output_dim",
|
257 |
+
"type": {
|
258 |
+
"type": "<class 'str'>"
|
259 |
}
|
260 |
}
|
261 |
},
|
|
|
262 |
"type": "basic"
|
263 |
},
|
264 |
+
"params": {
|
265 |
+
"output_dim": "same"
|
266 |
+
},
|
267 |
"status": "planned",
|
268 |
+
"title": "Linear"
|
269 |
},
|
270 |
"dragHandle": ".bg-primary",
|
271 |
"height": 200.0,
|
272 |
+
"id": "Linear 2",
|
273 |
"position": {
|
274 |
+
"x": 92.32755761444682,
|
275 |
+
"y": 20.626371289630676
|
276 |
},
|
277 |
"type": "basic",
|
278 |
"width": 200.0
|
|
|
290 |
"name": "x",
|
291 |
"position": "bottom",
|
292 |
"type": {
|
293 |
+
"type": "<class 'inspect._empty'>"
|
294 |
}
|
295 |
}
|
296 |
},
|
297 |
"name": "Activation",
|
298 |
"outputs": {
|
299 |
+
"output": {
|
300 |
+
"name": "output",
|
301 |
"position": "top",
|
302 |
"type": {
|
303 |
+
"type": "None"
|
304 |
}
|
305 |
}
|
306 |
},
|
|
|
311 |
"type": {
|
312 |
"enum": [
|
313 |
"ReLU",
|
314 |
+
"Leaky_ReLU",
|
315 |
"Tanh",
|
316 |
"Mish"
|
317 |
]
|
318 |
}
|
319 |
}
|
320 |
},
|
321 |
+
"position": {
|
322 |
+
"x": 344.0,
|
323 |
+
"y": 384.0
|
324 |
+
},
|
325 |
"type": "basic"
|
326 |
},
|
327 |
"params": {
|
328 |
+
"type": "Leaky_ReLU"
|
329 |
},
|
330 |
"status": "planned",
|
331 |
"title": "Activation"
|
332 |
},
|
333 |
"dragHandle": ".bg-primary",
|
334 |
"height": 200.0,
|
335 |
+
"id": "Activation 1",
|
336 |
"position": {
|
337 |
+
"x": 99.77615018185415,
|
338 |
+
"y": -249.43925929074078
|
339 |
},
|
340 |
"type": "basic",
|
341 |
"width": 200.0
|
|
|
348 |
"error": null,
|
349 |
"input_metadata": null,
|
350 |
"meta": {
|
351 |
+
"inputs": {},
|
352 |
+
"name": "Input: tensor",
|
353 |
+
"outputs": {
|
354 |
+
"x": {
|
355 |
+
"name": "x",
|
356 |
+
"position": "top",
|
357 |
"type": {
|
358 |
"type": "tensor"
|
359 |
}
|
360 |
}
|
361 |
},
|
|
|
|
|
362 |
"params": {
|
363 |
+
"name": {
|
364 |
+
"default": null,
|
365 |
+
"name": "name",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
"type": {
|
367 |
+
"type": "None"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
}
|
369 |
}
|
370 |
},
|
371 |
+
"position": {
|
372 |
+
"x": 258.0,
|
373 |
+
"y": 397.0
|
374 |
+
},
|
375 |
"type": "basic"
|
376 |
},
|
377 |
"params": {
|
378 |
+
"name": "X"
|
|
|
379 |
},
|
380 |
"status": "planned",
|
381 |
+
"title": "Input: tensor"
|
382 |
},
|
383 |
"dragHandle": ".bg-primary",
|
384 |
"height": 200.0,
|
385 |
+
"id": "Input: tensor 1",
|
386 |
"position": {
|
387 |
+
"x": 97.60681762952905,
|
388 |
+
"y": 293.6278596776366
|
389 |
},
|
390 |
"type": "basic",
|
391 |
"width": 200.0
|
|
|
398 |
"error": null,
|
399 |
"input_metadata": null,
|
400 |
"meta": {
|
401 |
+
"inputs": {},
|
402 |
+
"name": "Input: tensor",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
"outputs": {
|
404 |
+
"x": {
|
405 |
+
"name": "x",
|
406 |
+
"position": "top",
|
407 |
"type": {
|
408 |
"type": "tensor"
|
409 |
}
|
410 |
}
|
411 |
},
|
412 |
"params": {
|
413 |
+
"name": {
|
414 |
+
"default": null,
|
415 |
+
"name": "name",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
416 |
"type": {
|
417 |
+
"type": "None"
|
418 |
}
|
419 |
}
|
420 |
},
|
421 |
"position": {
|
422 |
+
"x": 1169.0,
|
423 |
+
"y": 340.0
|
424 |
},
|
425 |
"type": "basic"
|
426 |
},
|
427 |
"params": {
|
428 |
+
"name": "Y"
|
|
|
429 |
},
|
430 |
"status": "planned",
|
431 |
+
"title": "Input: tensor"
|
432 |
},
|
433 |
"dragHandle": ".bg-primary",
|
434 |
"height": 200.0,
|
435 |
+
"id": "Input: tensor 3",
|
436 |
"position": {
|
437 |
+
"x": 862.4359094222825,
|
438 |
+
"y": -290.0677203273021
|
439 |
},
|
440 |
"type": "basic",
|
441 |
"width": 200.0
|
examples/Model use
CHANGED
@@ -579,54 +579,54 @@
|
|
579 |
],
|
580 |
"data": [
|
581 |
[
|
582 |
-
"[0.
|
583 |
-
"[1.
|
584 |
-
"[1.
|
585 |
],
|
586 |
[
|
587 |
-
"[0.
|
588 |
-
"[1.
|
589 |
-
"[1.
|
590 |
],
|
591 |
[
|
592 |
-
"[0.
|
593 |
-
"[1.
|
594 |
-
"[1.
|
595 |
],
|
596 |
[
|
597 |
-
"[0.
|
598 |
-
"[1.
|
599 |
-
"[1.
|
600 |
],
|
601 |
[
|
602 |
-
"[0.
|
603 |
-
"[1.
|
604 |
-
"[1.
|
605 |
],
|
606 |
[
|
607 |
-
"[0.
|
608 |
-
"[1.
|
609 |
-
"[1.
|
610 |
],
|
611 |
[
|
612 |
-
"[0.
|
613 |
-
"[1.
|
614 |
-
"[1.
|
615 |
],
|
616 |
[
|
617 |
-
"[0.
|
618 |
-
"[1.
|
619 |
-
"[
|
620 |
],
|
621 |
[
|
622 |
-
"[0.
|
623 |
-
"[1.
|
624 |
-
"[1.
|
625 |
],
|
626 |
[
|
627 |
-
"[0.
|
628 |
-
"[1.
|
629 |
-
"[1.
|
630 |
]
|
631 |
]
|
632 |
},
|
@@ -644,6 +644,10 @@
|
|
644 |
"[0.85706753 0.61447072 0.41741937 0.85147089]",
|
645 |
"[1.85706758 1.61447072 1.41741943 1.85147095]"
|
646 |
],
|
|
|
|
|
|
|
|
|
647 |
[
|
648 |
"[0.19409031 0.68692201 0.60667384 0.57829887]",
|
649 |
"[1.19409037 1.68692207 1.60667384 1.57829881]"
|
@@ -712,6 +716,10 @@
|
|
712 |
"[0.24388778 0.07268471 0.68350857 0.73431659]",
|
713 |
"[1.24388778 1.07268476 1.68350863 1.73431659]"
|
714 |
],
|
|
|
|
|
|
|
|
|
715 |
[
|
716 |
"[0.56922203 0.98222166 0.76851749 0.28615737]",
|
717 |
"[1.56922197 1.9822216 1.76851749 1.28615737]"
|
@@ -733,8 +741,8 @@
|
|
733 |
"[1.68062544 1.98093534 1.14778829 1.53244972]"
|
734 |
],
|
735 |
[
|
736 |
-
"[0.
|
737 |
-
"[1.
|
738 |
],
|
739 |
[
|
740 |
"[0.79423058 0.07138705 0.061777 0.18766576]",
|
@@ -769,16 +777,12 @@
|
|
769 |
"[1.98033333 1.97656083 1.38939917 1.81491041]"
|
770 |
],
|
771 |
[
|
772 |
-
"[0.
|
773 |
-
"[1.
|
774 |
-
],
|
775 |
-
[
|
776 |
-
"[0.94221359 0.57740951 0.98649532 0.40934443]",
|
777 |
-
"[1.94221354 1.57740951 1.98649526 1.40934443]"
|
778 |
],
|
779 |
[
|
780 |
-
"[0.
|
781 |
-
"[1.
|
782 |
],
|
783 |
[
|
784 |
"[0.44330525 0.09997386 0.89025736 0.90507984]",
|
@@ -832,10 +836,6 @@
|
|
832 |
"[0.18720162 0.74115586 0.98626411 0.30355608]",
|
833 |
"[1.18720162 1.74115586 1.98626411 1.30355608]"
|
834 |
],
|
835 |
-
[
|
836 |
-
"[0.85566247 0.83362883 0.48424995 0.25265992]",
|
837 |
-
"[1.85566247 1.83362889 1.48424995 1.25265992]"
|
838 |
-
],
|
839 |
[
|
840 |
"[0.95928186 0.84273899 0.71514636 0.38619852]",
|
841 |
"[1.95928192 1.84273899 1.7151463 1.38619852]"
|
@@ -844,10 +844,6 @@
|
|
844 |
"[0.32565445 0.90939188 0.07488042 0.13730896]",
|
845 |
"[1.32565451 1.90939188 1.07488036 1.13730896]"
|
846 |
],
|
847 |
-
[
|
848 |
-
"[0.9829582 0.59269661 0.40120947 0.95487177]",
|
849 |
-
"[1.9829582 1.59269667 1.40120947 1.95487177]"
|
850 |
-
],
|
851 |
[
|
852 |
"[0.79905868 0.89367443 0.75429088 0.3190186 ]",
|
853 |
"[1.79905868 1.89367437 1.75429082 1.3190186 ]"
|
@@ -856,6 +852,10 @@
|
|
856 |
"[0.54914117 0.03810108 0.87531954 0.73044223]",
|
857 |
"[1.54914117 1.03810108 1.87531948 1.73044229]"
|
858 |
],
|
|
|
|
|
|
|
|
|
859 |
[
|
860 |
"[0.87285906 0.48354989 0.39394957 0.59456545]",
|
861 |
"[1.872859 1.48354983 1.39394951 1.59456539]"
|
@@ -876,14 +876,6 @@
|
|
876 |
"[0.39147133 0.29854035 0.84663737 0.58175623]",
|
877 |
"[1.39147139 1.29854035 1.84663737 1.58175623]"
|
878 |
],
|
879 |
-
[
|
880 |
-
"[0.02162331 0.81861657 0.92468154 0.07808572]",
|
881 |
-
"[1.02162337 1.81861663 1.92468154 1.07808566]"
|
882 |
-
],
|
883 |
-
[
|
884 |
-
"[0.02235305 0.52774918 0.7331115 0.84358269]",
|
885 |
-
"[1.02235305 1.52774918 1.7331115 1.84358263]"
|
886 |
-
],
|
887 |
[
|
888 |
"[0.6080932 0.56563014 0.32107437 0.72599429]",
|
889 |
"[1.60809326 1.5656302 1.32107437 1.72599435]"
|
@@ -904,6 +896,10 @@
|
|
904 |
"[0.60609657 0.96257663 0.19292736 0.95702219]",
|
905 |
"[1.60609651 1.96257663 1.19292736 1.95702219]"
|
906 |
],
|
|
|
|
|
|
|
|
|
907 |
[
|
908 |
"[0.70167565 0.26930219 0.5660674 0.61194974]",
|
909 |
"[1.70167565 1.26930213 1.56606746 1.61194968]"
|
@@ -912,10 +908,6 @@
|
|
912 |
"[0.76933283 0.86241865 0.44114518 0.65644735]",
|
913 |
"[1.76933289 1.86241865 1.44114518 1.65644741]"
|
914 |
],
|
915 |
-
[
|
916 |
-
"[0.59492421 0.90274489 0.38069052 0.46101224]",
|
917 |
-
"[1.59492421 1.90274489 1.38069057 1.46101224]"
|
918 |
-
],
|
919 |
[
|
920 |
"[0.15064228 0.03198934 0.25754827 0.51484001]",
|
921 |
"[1.15064228 1.03198934 1.25754833 1.51484001]"
|
@@ -932,6 +924,14 @@
|
|
932 |
"[0.49691743 0.61873293 0.90698647 0.94486356]",
|
933 |
"[1.49691749 1.61873293 1.90698647 1.94486356]"
|
934 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
935 |
[
|
936 |
"[0.37959969 0.42820001 0.10690689 0.96353984]",
|
937 |
"[1.37959969 1.42820001 1.10690689 1.96353984]"
|
@@ -960,10 +960,6 @@
|
|
960 |
"[0.47856545 0.46267092 0.6376707 0.84747767]",
|
961 |
"[1.47856545 1.46267092 1.63767076 1.84747767]"
|
962 |
],
|
963 |
-
[
|
964 |
-
"[0.49584109 0.80599248 0.07096875 0.75872749]",
|
965 |
-
"[1.49584103 1.80599248 1.07096875 1.75872755]"
|
966 |
-
],
|
967 |
[
|
968 |
"[0.43500566 0.66041756 0.80293626 0.96224713]",
|
969 |
"[1.43500566 1.66041756 1.80293632 1.96224713]"
|
@@ -976,6 +972,10 @@
|
|
976 |
"[0.28942841 0.05601001 0.33039129 0.27781558]",
|
977 |
"[1.28942847 1.05601001 1.33039129 1.27781558]"
|
978 |
],
|
|
|
|
|
|
|
|
|
979 |
[
|
980 |
"[0.43681622 0.74680805 0.83598751 0.12414402]",
|
981 |
"[1.43681622 1.74680805 1.83598757 1.12414408]"
|
@@ -1000,7 +1000,7 @@
|
|
1000 |
}
|
1001 |
},
|
1002 |
"other": {
|
1003 |
-
"model": "ModelConfig(model=Sequential(\n (0) - Identity():
|
1004 |
},
|
1005 |
"relations": []
|
1006 |
},
|
@@ -1032,11 +1032,11 @@
|
|
1032 |
"model": {
|
1033 |
"model": {
|
1034 |
"inputs": [
|
1035 |
-
"
|
1036 |
],
|
1037 |
"loss_inputs": [
|
1038 |
-
"
|
1039 |
-
"
|
1040 |
],
|
1041 |
"outputs": [
|
1042 |
"END_Repeat_1_output"
|
@@ -1207,11 +1207,11 @@
|
|
1207 |
"model": {
|
1208 |
"model": {
|
1209 |
"inputs": [
|
1210 |
-
"
|
1211 |
],
|
1212 |
"loss_inputs": [
|
1213 |
-
"
|
1214 |
-
"
|
1215 |
],
|
1216 |
"outputs": [
|
1217 |
"END_Repeat_1_output"
|
@@ -1270,8 +1270,8 @@
|
|
1270 |
"type": "basic"
|
1271 |
},
|
1272 |
"params": {
|
1273 |
-
"epochs": "
|
1274 |
-
"input_mapping": "{\"map\":{\"
|
1275 |
"model_name": "model"
|
1276 |
},
|
1277 |
"status": "done",
|
@@ -1319,11 +1319,11 @@
|
|
1319 |
"model": {
|
1320 |
"model": {
|
1321 |
"inputs": [
|
1322 |
-
"
|
1323 |
],
|
1324 |
"loss_inputs": [
|
1325 |
-
"
|
1326 |
-
"
|
1327 |
],
|
1328 |
"outputs": [
|
1329 |
"END_Repeat_1_output"
|
@@ -1382,7 +1382,7 @@
|
|
1382 |
"type": "basic"
|
1383 |
},
|
1384 |
"params": {
|
1385 |
-
"input_mapping": "{\"map\":{\"
|
1386 |
"model_name": "model",
|
1387 |
"output_mapping": "{\"map\":{\"END_Repeat_1_output\":{\"df\":\"df_test\",\"column\":\"predicted\"}}}"
|
1388 |
},
|
|
|
579 |
],
|
580 |
"data": [
|
581 |
[
|
582 |
+
"[0.31518555 0.49643308 0.11509258 0.95458382]",
|
583 |
+
"[1.31518555 1.49643302 1.11509252 1.95458388]",
|
584 |
+
"[1.3819222450256348, -0.005686390213668346, 1.3793643712997437, 1.581865906715393]"
|
585 |
],
|
586 |
[
|
587 |
+
"[0.02162331 0.81861657 0.92468154 0.07808572]",
|
588 |
+
"[1.02162337 1.81861663 1.92468154 1.07808566]",
|
589 |
+
"[1.312654972076416, -0.00689137727022171, 1.4941580295562744, 1.243792176246643]"
|
590 |
],
|
591 |
[
|
592 |
+
"[0.94221359 0.57740951 0.98649532 0.40934443]",
|
593 |
+
"[1.94221354 1.57740951 1.98649526 1.40934443]",
|
594 |
+
"[1.9255921840667725, -0.008701151236891747, 1.751355767250061, 1.79597806930542]"
|
595 |
],
|
596 |
[
|
597 |
+
"[0.34084332 0.73018837 0.54168713 0.91440833]",
|
598 |
+
"[1.34084332 1.73018837 1.54168713 1.91440833]",
|
599 |
+
"[1.6509568691253662, -0.007272087037563324, 1.5942981243133545, 1.81572687625885]"
|
600 |
],
|
601 |
[
|
602 |
+
"[0.85566247 0.83362883 0.48424995 0.25265992]",
|
603 |
+
"[1.85566247 1.83362889 1.48424995 1.25265992]",
|
604 |
+
"[1.7482354640960693, -0.0063837491907179356, 1.4504402875900269, 1.5329445600509644]"
|
605 |
],
|
606 |
[
|
607 |
+
"[0.02235305 0.52774918 0.7331115 0.84358269]",
|
608 |
+
"[1.02235305 1.52774918 1.7331115 1.84358263]",
|
609 |
+
"[1.3979142904281616, -0.007555779069662094, 1.6136289834976196, 1.6417407989501953]"
|
610 |
],
|
611 |
[
|
612 |
+
"[0.9829582 0.59269661 0.40120947 0.95487177]",
|
613 |
+
"[1.9829582 1.59269667 1.40120947 1.95487177]",
|
614 |
+
"[1.9523842334747314, -0.00748100271448493, 1.6264307498931885, 1.9942888021469116]"
|
615 |
],
|
616 |
[
|
617 |
+
"[0.49584109 0.80599248 0.07096875 0.75872749]",
|
618 |
+
"[1.49584103 1.80599248 1.07096875 1.75872755]",
|
619 |
+
"[1.5513110160827637, -0.005337317008525133, 1.3384482860565186, 1.5973539352416992]"
|
620 |
],
|
621 |
[
|
622 |
+
"[0.00497234 0.39319336 0.57054168 0.75150961]",
|
623 |
+
"[1.00497234 1.39319336 1.57054162 1.75150967]",
|
624 |
+
"[1.2277441024780273, -0.0067505668848752975, 1.4969637393951416, 1.4524610042572021]"
|
625 |
],
|
626 |
[
|
627 |
+
"[0.59492421 0.90274489 0.38069052 0.46101224]",
|
628 |
+
"[1.59492421 1.90274489 1.38069057 1.46101224]",
|
629 |
+
"[1.6593225002288818, -0.006088308058679104, 1.4240546226501465, 1.570335865020752]"
|
630 |
]
|
631 |
]
|
632 |
},
|
|
|
644 |
"[0.85706753 0.61447072 0.41741937 0.85147089]",
|
645 |
"[1.85706758 1.61447072 1.41741943 1.85147095]"
|
646 |
],
|
647 |
+
[
|
648 |
+
"[0.11560339 0.57495481 0.76535827 0.0391947 ]",
|
649 |
+
"[1.11560345 1.57495475 1.76535821 1.0391947 ]"
|
650 |
+
],
|
651 |
[
|
652 |
"[0.19409031 0.68692201 0.60667384 0.57829887]",
|
653 |
"[1.19409037 1.68692207 1.60667384 1.57829881]"
|
|
|
716 |
"[0.24388778 0.07268471 0.68350857 0.73431659]",
|
717 |
"[1.24388778 1.07268476 1.68350863 1.73431659]"
|
718 |
],
|
719 |
+
[
|
720 |
+
"[0.62569475 0.9881897 0.83639616 0.9828859 ]",
|
721 |
+
"[1.62569475 1.9881897 1.83639622 1.98288584]"
|
722 |
+
],
|
723 |
[
|
724 |
"[0.56922203 0.98222166 0.76851749 0.28615737]",
|
725 |
"[1.56922197 1.9822216 1.76851749 1.28615737]"
|
|
|
741 |
"[1.68062544 1.98093534 1.14778829 1.53244972]"
|
742 |
],
|
743 |
[
|
744 |
+
"[0.79121011 0.54161114 0.69369799 0.1520769 ]",
|
745 |
+
"[1.79121017 1.54161119 1.69369793 1.15207696]"
|
746 |
],
|
747 |
[
|
748 |
"[0.79423058 0.07138705 0.061777 0.18766576]",
|
|
|
777 |
"[1.98033333 1.97656083 1.38939917 1.81491041]"
|
778 |
],
|
779 |
[
|
780 |
+
"[0.74064726 0.4155122 0.09800029 0.49930882]",
|
781 |
+
"[1.74064732 1.4155122 1.09800029 1.49930882]"
|
|
|
|
|
|
|
|
|
782 |
],
|
783 |
[
|
784 |
+
"[0.78956431 0.87284744 0.06880784 0.03455889]",
|
785 |
+
"[1.78956437 1.87284744 1.06880784 1.03455889]"
|
786 |
],
|
787 |
[
|
788 |
"[0.44330525 0.09997386 0.89025736 0.90507984]",
|
|
|
836 |
"[0.18720162 0.74115586 0.98626411 0.30355608]",
|
837 |
"[1.18720162 1.74115586 1.98626411 1.30355608]"
|
838 |
],
|
|
|
|
|
|
|
|
|
839 |
[
|
840 |
"[0.95928186 0.84273899 0.71514636 0.38619852]",
|
841 |
"[1.95928192 1.84273899 1.7151463 1.38619852]"
|
|
|
844 |
"[0.32565445 0.90939188 0.07488042 0.13730896]",
|
845 |
"[1.32565451 1.90939188 1.07488036 1.13730896]"
|
846 |
],
|
|
|
|
|
|
|
|
|
847 |
[
|
848 |
"[0.79905868 0.89367443 0.75429088 0.3190186 ]",
|
849 |
"[1.79905868 1.89367437 1.75429082 1.3190186 ]"
|
|
|
852 |
"[0.54914117 0.03810108 0.87531954 0.73044223]",
|
853 |
"[1.54914117 1.03810108 1.87531948 1.73044229]"
|
854 |
],
|
855 |
+
[
|
856 |
+
"[0.67418337 0.79634351 0.23229051 0.71345252]",
|
857 |
+
"[1.67418337 1.79634356 1.23229051 1.71345258]"
|
858 |
+
],
|
859 |
[
|
860 |
"[0.87285906 0.48354989 0.39394957 0.59456545]",
|
861 |
"[1.872859 1.48354983 1.39394951 1.59456539]"
|
|
|
876 |
"[0.39147133 0.29854035 0.84663737 0.58175623]",
|
877 |
"[1.39147139 1.29854035 1.84663737 1.58175623]"
|
878 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
[
|
880 |
"[0.6080932 0.56563014 0.32107437 0.72599429]",
|
881 |
"[1.60809326 1.5656302 1.32107437 1.72599435]"
|
|
|
896 |
"[0.60609657 0.96257663 0.19292736 0.95702219]",
|
897 |
"[1.60609651 1.96257663 1.19292736 1.95702219]"
|
898 |
],
|
899 |
+
[
|
900 |
+
"[0.80654246 0.08253473 0.74478531 0.71257162]",
|
901 |
+
"[1.8065424 1.08253479 1.74478531 1.71257162]"
|
902 |
+
],
|
903 |
[
|
904 |
"[0.70167565 0.26930219 0.5660674 0.61194974]",
|
905 |
"[1.70167565 1.26930213 1.56606746 1.61194968]"
|
|
|
908 |
"[0.76933283 0.86241865 0.44114518 0.65644735]",
|
909 |
"[1.76933289 1.86241865 1.44114518 1.65644741]"
|
910 |
],
|
|
|
|
|
|
|
|
|
911 |
[
|
912 |
"[0.15064228 0.03198934 0.25754827 0.51484001]",
|
913 |
"[1.15064228 1.03198934 1.25754833 1.51484001]"
|
|
|
924 |
"[0.49691743 0.61873293 0.90698647 0.94486356]",
|
925 |
"[1.49691749 1.61873293 1.90698647 1.94486356]"
|
926 |
],
|
927 |
+
[
|
928 |
+
"[0.6032477 0.83361369 0.18538666 0.19108021]",
|
929 |
+
"[1.60324764 1.83361363 1.18538666 1.19108021]"
|
930 |
+
],
|
931 |
+
[
|
932 |
+
"[0.63235509 0.70352674 0.96188956 0.46240485]",
|
933 |
+
"[1.63235509 1.70352674 1.96188951 1.46240485]"
|
934 |
+
],
|
935 |
[
|
936 |
"[0.37959969 0.42820001 0.10690689 0.96353984]",
|
937 |
"[1.37959969 1.42820001 1.10690689 1.96353984]"
|
|
|
960 |
"[0.47856545 0.46267092 0.6376707 0.84747767]",
|
961 |
"[1.47856545 1.46267092 1.63767076 1.84747767]"
|
962 |
],
|
|
|
|
|
|
|
|
|
963 |
[
|
964 |
"[0.43500566 0.66041756 0.80293626 0.96224713]",
|
965 |
"[1.43500566 1.66041756 1.80293632 1.96224713]"
|
|
|
972 |
"[0.28942841 0.05601001 0.33039129 0.27781558]",
|
973 |
"[1.28942847 1.05601001 1.33039129 1.27781558]"
|
974 |
],
|
975 |
+
[
|
976 |
+
"[0.68094063 0.45189077 0.22661722 0.37354094]",
|
977 |
+
"[1.68094063 1.45189071 1.22661722 1.37354088]"
|
978 |
+
],
|
979 |
[
|
980 |
"[0.43681622 0.74680805 0.83598751 0.12414402]",
|
981 |
"[1.43681622 1.74680805 1.83598757 1.12414408]"
|
|
|
1000 |
}
|
1001 |
},
|
1002 |
"other": {
|
1003 |
+
"model": "ModelConfig(model=Sequential(\n (0) - Identity(): Input__tensor_1_x -> START_Repeat_1_output\n (1) - Linear(in_features=4, out_features=4, bias=True): START_Repeat_1_output -> Linear_2_output\n (2) - <function leaky_relu at 0x759513340220>: Linear_2_output -> Activation_1_output\n (3) - Identity(): Activation_1_output -> END_Repeat_1_output\n (4) - Identity(): END_Repeat_1_output -> END_Repeat_1_output\n), model_inputs=['Input__tensor_1_x'], model_outputs=['END_Repeat_1_output'], loss_inputs=['END_Repeat_1_output', 'Input__tensor_3_x'], loss=Sequential(\n (0) - <function mse_loss at 0x759513341d00>: END_Repeat_1_output, Input__tensor_3_x -> MSE_loss_1_loss\n (1) - Identity(): MSE_loss_1_loss -> loss\n), optimizer=SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n lr: 0.1\n maximize: False\n momentum: 0\n nesterov: False\n weight_decay: 0\n), source_workspace=None, trained=True)"
|
1004 |
},
|
1005 |
"relations": []
|
1006 |
},
|
|
|
1032 |
"model": {
|
1033 |
"model": {
|
1034 |
"inputs": [
|
1035 |
+
"Input__tensor_1_x"
|
1036 |
],
|
1037 |
"loss_inputs": [
|
1038 |
+
"END_Repeat_1_output",
|
1039 |
+
"Input__tensor_3_x"
|
1040 |
],
|
1041 |
"outputs": [
|
1042 |
"END_Repeat_1_output"
|
|
|
1207 |
"model": {
|
1208 |
"model": {
|
1209 |
"inputs": [
|
1210 |
+
"Input__tensor_1_x"
|
1211 |
],
|
1212 |
"loss_inputs": [
|
1213 |
+
"END_Repeat_1_output",
|
1214 |
+
"Input__tensor_3_x"
|
1215 |
],
|
1216 |
"outputs": [
|
1217 |
"END_Repeat_1_output"
|
|
|
1270 |
"type": "basic"
|
1271 |
},
|
1272 |
"params": {
|
1273 |
+
"epochs": "150",
|
1274 |
+
"input_mapping": "{\"map\":{\"Input__tensor_1_x\":{\"df\":\"df_train\",\"column\":\"x\"},\"Input__tensor_3_x\":{\"df\":\"df_train\",\"column\":\"y\"}}}",
|
1275 |
"model_name": "model"
|
1276 |
},
|
1277 |
"status": "done",
|
|
|
1319 |
"model": {
|
1320 |
"model": {
|
1321 |
"inputs": [
|
1322 |
+
"Input__tensor_1_x"
|
1323 |
],
|
1324 |
"loss_inputs": [
|
1325 |
+
"END_Repeat_1_output",
|
1326 |
+
"Input__tensor_3_x"
|
1327 |
],
|
1328 |
"outputs": [
|
1329 |
"END_Repeat_1_output"
|
|
|
1382 |
"type": "basic"
|
1383 |
},
|
1384 |
"params": {
|
1385 |
+
"input_mapping": "{\"map\":{\"Input__tensor_1_x\":{\"df\":\"df_test\",\"column\":\"x\"}}}",
|
1386 |
"model_name": "model",
|
1387 |
"output_mapping": "{\"map\":{\"END_Repeat_1_output\":{\"df\":\"df_test\",\"column\":\"predicted\"}}}"
|
1388 |
},
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""Boxes for defining PyTorch models."""
|
2 |
|
3 |
import copy
|
|
|
4 |
import graphlib
|
5 |
import types
|
6 |
|
@@ -15,6 +16,21 @@ from . import core
|
|
15 |
ENV = "PyTorch model"
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def reg(name, inputs=[], outputs=None, params=[]):
|
19 |
if outputs is None:
|
20 |
outputs = inputs
|
@@ -27,13 +43,9 @@ def reg(name, inputs=[], outputs=None, params=[]):
|
|
27 |
)
|
28 |
|
29 |
|
30 |
-
reg("Input:
|
31 |
reg("Input: graph edges", outputs=["edges"])
|
32 |
-
reg("Input: label", outputs=["y"])
|
33 |
-
reg("Input: positive sample", outputs=["x_pos"])
|
34 |
-
reg("Input: negative sample", outputs=["x_neg"])
|
35 |
reg("Input: sequential", outputs=["y"])
|
36 |
-
reg("Input: zeros", outputs=["x"])
|
37 |
|
38 |
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
|
39 |
reg(
|
@@ -59,10 +71,35 @@ reg(
|
|
59 |
),
|
60 |
],
|
61 |
)
|
|
|
|
|
62 |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
|
63 |
reg("LayerNorm", inputs=["x"])
|
64 |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
reg("Softmax", inputs=["x"])
|
67 |
reg(
|
68 |
"Graph conv",
|
@@ -70,11 +107,6 @@ reg(
|
|
70 |
outputs=["x"],
|
71 |
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
|
72 |
)
|
73 |
-
reg(
|
74 |
-
"Activation",
|
75 |
-
inputs=["x"],
|
76 |
-
params=[P.options("type", ["ReLU", "Leaky ReLU", "Tanh", "Mish"])],
|
77 |
-
)
|
78 |
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
|
79 |
reg("Add", inputs=["a", "b"], outputs=["x"])
|
80 |
reg("Subtract", inputs=["a", "b"], outputs=["x"])
|
@@ -128,6 +160,28 @@ def _to_id(*strings: str) -> str:
|
|
128 |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
|
129 |
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
class ColumnSpec(pydantic.BaseModel):
|
132 |
df: str
|
133 |
column: str
|
@@ -306,15 +360,6 @@ def build_model(ws: workspace.Workspace, inputs: dict[str, torch.Tensor]) -> Mod
|
|
306 |
outputs = types.SimpleNamespace(**outputs)
|
307 |
ls = loss_layers if "loss" in regions[node_id] else layers
|
308 |
match t:
|
309 |
-
case "Linear":
|
310 |
-
isize = sizes.get(inputs.x, 1)
|
311 |
-
osize = isize if p["output_dim"] == "same" else int(p["output_dim"])
|
312 |
-
ls.append((torch.nn.Linear(isize, osize), f"{inputs.x} -> {outputs.x}"))
|
313 |
-
sizes[outputs.x] = osize
|
314 |
-
case "Activation":
|
315 |
-
f = getattr(torch.nn.functional, p["type"].name.lower().replace(" ", "_"))
|
316 |
-
ls.append((f, f"{inputs.x} -> {outputs.x}"))
|
317 |
-
sizes[outputs.x] = sizes.get(inputs.x, 1)
|
318 |
case "MSE loss":
|
319 |
ls.append(
|
320 |
(
|
@@ -335,6 +380,25 @@ def build_model(ws: workspace.Workspace, inputs: dict[str, torch.Tensor]) -> Mod
|
|
335 |
r = regions.get(n, set())
|
336 |
if ("repeat", repeat_id) in r:
|
337 |
print(f"repeating {n}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
cfg["model_inputs"] = list(used_in_model - made_in_model)
|
339 |
cfg["model_outputs"] = list(made_in_model & used_in_loss)
|
340 |
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
|
|
|
1 |
"""Boxes for defining PyTorch models."""
|
2 |
|
3 |
import copy
|
4 |
+
import enum
|
5 |
import graphlib
|
6 |
import types
|
7 |
|
|
|
16 |
ENV = "PyTorch model"
|
17 |
|
18 |
|
19 |
+
def op(name, **kwargs):
|
20 |
+
_op = ops.op(ENV, name, **kwargs)
|
21 |
+
|
22 |
+
def decorator(func):
|
23 |
+
_op(func)
|
24 |
+
op = func.__op__
|
25 |
+
for p in op.inputs.values():
|
26 |
+
p.position = "bottom"
|
27 |
+
for p in op.outputs.values():
|
28 |
+
p.position = "top"
|
29 |
+
return func
|
30 |
+
|
31 |
+
return decorator
|
32 |
+
|
33 |
+
|
34 |
def reg(name, inputs=[], outputs=None, params=[]):
|
35 |
if outputs is None:
|
36 |
outputs = inputs
|
|
|
43 |
)
|
44 |
|
45 |
|
46 |
+
reg("Input: tensor", outputs=["x"], params=[P.basic("name")])
|
47 |
reg("Input: graph edges", outputs=["edges"])
|
|
|
|
|
|
|
48 |
reg("Input: sequential", outputs=["y"])
|
|
|
49 |
|
50 |
reg("LSTM", inputs=["x", "h"], outputs=["x", "h"])
|
51 |
reg(
|
|
|
71 |
),
|
72 |
],
|
73 |
)
|
74 |
+
|
75 |
+
|
76 |
reg("Attention", inputs=["q", "k", "v"], outputs=["x", "weights"])
|
77 |
reg("LayerNorm", inputs=["x"])
|
78 |
reg("Dropout", inputs=["x"], params=[P.basic("p", 0.5)])
|
79 |
+
|
80 |
+
|
81 |
+
@op("Linear")
|
82 |
+
def linear(x, *, output_dim="same"):
|
83 |
+
if output_dim == "same":
|
84 |
+
oshape = x.shape
|
85 |
+
else:
|
86 |
+
oshape = tuple(*x.shape[:-1], int(output_dim))
|
87 |
+
return Layer(torch.nn.Linear(x.shape, oshape), shape=oshape)
|
88 |
+
|
89 |
+
|
90 |
+
class ActivationTypes(enum.Enum):
|
91 |
+
ReLU = "ReLU"
|
92 |
+
Leaky_ReLU = "Leaky ReLU"
|
93 |
+
Tanh = "Tanh"
|
94 |
+
Mish = "Mish"
|
95 |
+
|
96 |
+
|
97 |
+
@op("Activation")
|
98 |
+
def activation(x, *, type: ActivationTypes = ActivationTypes.ReLU):
|
99 |
+
f = getattr(torch.nn.functional, type.name.lower().replace(" ", "_"))
|
100 |
+
return Layer(f, shape=x.shape)
|
101 |
+
|
102 |
+
|
103 |
reg("Softmax", inputs=["x"])
|
104 |
reg(
|
105 |
"Graph conv",
|
|
|
107 |
outputs=["x"],
|
108 |
params=[P.options("type", ["GCNConv", "GATConv", "GATv2Conv", "SAGEConv"])],
|
109 |
)
|
|
|
|
|
|
|
|
|
|
|
110 |
reg("Concatenate", inputs=["a", "b"], outputs=["x"])
|
111 |
reg("Add", inputs=["a", "b"], outputs=["x"])
|
112 |
reg("Subtract", inputs=["a", "b"], outputs=["x"])
|
|
|
160 |
return "_".join("".join(c if c.isalnum() else "_" for c in s) for s in strings)
|
161 |
|
162 |
|
163 |
+
@dataclasses.dataclass
|
164 |
+
class OpInput:
|
165 |
+
"""Ops get their inputs like this. They have to return a Layer made for this input."""
|
166 |
+
|
167 |
+
id: str
|
168 |
+
shape: tuple[int, ...]
|
169 |
+
|
170 |
+
|
171 |
+
@dataclasses.dataclass
|
172 |
+
class Layer:
|
173 |
+
"""Return this from an op. Must include a module and the shapes of the outputs."""
|
174 |
+
|
175 |
+
module: torch.nn.Module
|
176 |
+
shapes: list[tuple[int, ...]] | None = None # One for each output.
|
177 |
+
shape: dataclasses.InitVar[tuple[int, ...] | None] = None # Convenience for single output.
|
178 |
+
|
179 |
+
def __post_init__(self, shape):
|
180 |
+
assert not self.shapes or not shape, "Cannot set both shapes and shape."
|
181 |
+
if shape:
|
182 |
+
self.shapes = [shape]
|
183 |
+
|
184 |
+
|
185 |
class ColumnSpec(pydantic.BaseModel):
|
186 |
df: str
|
187 |
column: str
|
|
|
360 |
outputs = types.SimpleNamespace(**outputs)
|
361 |
ls = loss_layers if "loss" in regions[node_id] else layers
|
362 |
match t:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
case "MSE loss":
|
364 |
ls.append(
|
365 |
(
|
|
|
380 |
r = regions.get(n, set())
|
381 |
if ("repeat", repeat_id) in r:
|
382 |
print(f"repeating {n}")
|
383 |
+
case "Optimizer" | "Input: tensor" | "Input: graph edges" | "Input: sequential":
|
384 |
+
pass
|
385 |
+
case _:
|
386 |
+
op_inputs = []
|
387 |
+
for i in op.inputs.keys():
|
388 |
+
id = getattr(inputs, i)
|
389 |
+
op_inputs.append(OpInput(id, shape=sizes.get(id, 1)))
|
390 |
+
if op.func != ops.no_op:
|
391 |
+
layer = op.func(*op_inputs, **p)
|
392 |
+
else:
|
393 |
+
layer = Layer(torch.nn.Identity(), shapes=[i.shape for i in op_inputs])
|
394 |
+
input_ids = ", ".join(i.id for i in op_inputs)
|
395 |
+
output_ids = []
|
396 |
+
for o, shape in zip(op.outputs.keys(), layer.shapes):
|
397 |
+
id = getattr(outputs, o)
|
398 |
+
output_ids.append(id)
|
399 |
+
sizes[id] = shape
|
400 |
+
output_ids = ", ".join(output_ids)
|
401 |
+
ls.append((layer.module, f"{input_ids} -> {output_ids}"))
|
402 |
cfg["model_inputs"] = list(used_in_model - made_in_model)
|
403 |
cfg["model_outputs"] = list(made_in_model & used_in_loss)
|
404 |
cfg["loss_inputs"] = list(used_in_loss - made_in_loss)
|