darabos commited on
Commit
451d719
·
1 Parent(s): 1b098e4

Fix minor mistakes, tidy up demos.

Browse files
examples/AIMO.lynxkite.json CHANGED
@@ -1,124 +1,108 @@
1
  {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  "env": "LLM logic",
3
  "nodes": [
4
  {
5
- "id": "View 1",
6
- "type": "table_view",
7
  "data": {
8
- "title": "View",
9
- "params": {},
10
- "display": {
11
- "dataframes": {
12
- "df": {
13
- "columns": [
14
- "id",
15
- "text",
16
- "answer",
17
- "prompt",
18
- "response",
19
- "iterations-Loop 1"
20
- ],
21
- "data": [
22
- [
23
- "229ee8",
24
- "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
25
- 52,
26
- "Please give a correct solution for this: Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
27
- "To solve this problem, we need to follow these steps:\n\n1. **Understand the Parabola and Line Intersection:**\n The parabola is given by \\( y = kx^2 - 2kx + l \\).\n The line is given by \\( y = 4 \\).\n\n2. **Find the Intersection Points:**\n Set the equations equal to each other to find the points of intersection \\( A \\) and \\( B \\):\n ",
28
- 2
29
- ],
30
- [
31
- "246d26",
32
- "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
33
- 250,
34
- "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
35
- "To solve this problem, we need to ensure that any two yellow numbers have a sum that is a blue number. \n\nLet's break down the problem:\n\n1. **Understand the problem constraints:**\n - We have three-digit numbers ranging from 111 to 999.\n - Each number must be colored either blue or yellow.\n - The sum of any two yellow numbers must be a blue number.\n\n2. **Define the variables:**\n -",
36
- 2
37
- ],
38
- [
39
- "2fc4ad",
40
- "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
41
- 702,
42
- "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
43
- "Let's break down the problem step by step. \n\n**Understanding the Sparkle Operation:**\n\n1. **Sum of Digits:**\n For a number \\( n \\), the sum of its digits is calculated.\n\n2. **Factorial of Sum:**\n The sparkle is then calculated as \\( n! \\).\n\n**Special Numbers:**\n\nA special number is defined as one that eventually leads to every subsequent number being less than 6. This implies",
44
- 2
45
- ],
46
- [
47
- "430b63",
48
- "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
49
- 800,
50
- "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
51
- "To solve the problem, we need to find the minimum value of the expression \\(5x^2 + 5y^2 - 8xy\\) subject to the constraint \\(|x - 2y| + |y - 2x| = 40\\).\n\nHere are the steps to solve this problem:\n\n1. **Understand the Constraint:**\n The constraint given is \\(|x - 2y| + |y - 2",
52
- 2
53
- ],
54
- [
55
- "5277ed",
56
- "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
57
- 211,
58
- "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
59
- "To solve this problem, we need to find a unique increasing geometric sequence of five 2-digit positive integers. Let's denote the first term of the sequence by \\( a \\) and the common ratio by \\( r \\). The five terms of the sequence can be represented as:\n\n\\[ a, ar, ar^2, ar^3, ar^4 \\]\n\nGiven that all these terms are 2-digit positive integers, we need to find \\",
60
- 2
61
- ],
62
- [
63
- "739bc9",
64
- "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
65
- 199,
66
- "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
67
- "To solve the problem, we need to analyze the equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac{m}{100}\\) and determine for how many positive integers \\(m\\) the equation has exactly 4 distinct solutions.\n\n### Steps to Solve the Problem:\n\n1. **Understand the Absolute Value Equation:**\n - The equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac",
68
- 2
69
- ],
70
- [
71
- "82e2a0",
72
- "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
73
- 185,
74
- "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
75
- "To solve this problem, we need to determine the probability \\(\\frac{a}{b}\\) that the highest roll on four 6-sided dice is a 5, and then find the values of \\(a\\) and \\(b\\) such that \\(a\\) and \\(b\\) are relatively prime. Let's break down the steps:\n\n1. **Determine the Sample Space:**\n - Calculate the total number of possible outcomes when rolling four ",
76
- 2
77
- ],
78
- [
79
- "8ee6f3",
80
- "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
81
- 320,
82
- "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
83
- "To solve this problem, we need to find the points \\((x, y)\\) that satisfy the given equation:\n\\[\n((\\text{Abs}(x + y) - 10)^2 + (\\text{Abs}(x - y) - 10)^2)((\\text{Abs}(x) - 8)^2 + (\\text{Abs}(y) - 8)^2) = 0\n\\]\n\nFirst,",
84
- 2
85
- ],
86
- [
87
- "bedda4",
88
- "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
89
- 480,
90
- "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
91
- "To solve this problem, we need to carefully analyze the geometric configuration and calculate the areas of the four regions formed by the lines \\(DP\\) and \\(BQ\\) within the unit square \\(ABCD\\).\n\nLet's break down the problem into manageable parts:\n\n1. **Define the Coordinates:**\n - Place the unit square \\(ABCD\\) in the coordinate plane with \\(A\\) at \\((0, 0)\\),",
92
- 2
93
- ],
94
- [
95
- "d7e9c9",
96
- "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
97
- 199,
98
- "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
99
- "To solve the problem, we need to find the function \\( f \\) that satisfies the given conditions:\n\n1. \\( f(f(f(n))) = 8n - 7 \\)\n2. \\( f(2n) = 2f(n) + 1 \\)\n\nLet's break down the problem step-by-step:\n\n### Step 1: Analyze the Recursion\n\nFirst, let's express",
100
- 2
101
- ]
102
- ]
103
- }
104
- }
105
- },
106
  "error": null,
 
107
  "meta": {
108
- "outputs": {},
109
- "type": "table_view",
110
  "inputs": {
111
  "input": {
 
 
112
  "type": {
113
  "type": "<class 'inspect._empty'>"
114
- },
115
- "name": "input",
116
- "position": "left"
117
  }
118
  },
119
  "name": "View",
120
- "params": {}
 
 
121
  },
 
 
 
122
  "view": {
123
  "dataframes": {
124
  "df": {
@@ -205,25 +189,24 @@
205
  }
206
  }
207
  },
208
- "position": {
209
- "x": 918.8473117253317,
210
- "y": -788.2139000963755
211
- },
212
- "height": 497.0,
213
  "dragging": false,
 
 
214
  "measured": {
215
  "height": 497.0,
216
  "width": 847.0
217
  },
218
  "parentId": null,
 
 
 
 
 
219
  "width": 847.0
220
  },
221
  {
222
- "id": "View 2",
223
- "type": "table_view",
224
  "data": {
225
- "title": "View",
226
- "params": {},
227
  "display": {
228
  "dataframes": {
229
  "df": {
@@ -282,132 +265,640 @@
282
  "d7e9c9",
283
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
284
  199
285
- ]
286
- ]
287
- }
288
- }
289
- },
290
- "error": null,
291
- "meta": {
292
- "name": "View",
293
- "outputs": {},
294
- "params": {},
295
- "type": "table_view",
296
- "inputs": {
297
- "input": {
298
- "name": "input",
299
- "type": {
300
- "type": "<class 'inspect._empty'>"
301
- },
302
- "position": "left"
303
- }
304
- }
305
- },
306
- "view": {
307
- "dataframes": {
308
- "df": {
309
- "data": [
310
  [
311
- "229ee8",
312
- "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
313
- 52.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
  ],
315
  [
316
  "246d26",
317
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
318
- 250.0
319
  ],
320
  [
321
  "2fc4ad",
322
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
323
- 702.0
324
  ],
325
  [
326
  "430b63",
327
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
328
- 800.0
329
  ],
330
  [
331
  "5277ed",
332
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
333
- 211.0
334
  ],
335
  [
336
  "739bc9",
337
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
338
- 199.0
339
  ],
340
  [
341
  "82e2a0",
342
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
343
- 185.0
344
  ],
345
  [
346
  "8ee6f3",
347
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
348
- 320.0
349
  ],
350
  [
351
  "bedda4",
352
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
353
- 480.0
354
  ],
355
  [
356
  "d7e9c9",
357
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
358
- 199.0
359
- ]
360
- ],
361
- "columns": [
362
- "id",
363
- "text",
364
- "answer"
365
- ]
366
- }
367
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368
  }
369
  },
370
- "position": {
371
- "x": -109.39082282780262,
372
- "y": -773.6298092973026
373
- },
374
- "height": 491.0,
375
  "dragging": false,
 
 
376
  "measured": {
377
- "width": 642.0,
378
- "height": 491.0
379
  },
380
  "parentId": null,
 
 
 
 
 
381
  "width": 642.0
382
  },
383
  {
384
- "id": "Create prompt 1",
385
- "type": "basic",
386
  "data": {
387
- "title": "Create prompt",
388
- "params": {
389
- "template": "Please give a correct solution for this: {{text}}"
390
- },
391
  "display": null,
392
  "error": null,
393
- "collapsed": null,
394
  "meta": {
 
 
 
 
 
 
 
 
 
 
395
  "outputs": {
396
  "output": {
 
 
397
  "type": {
398
  "type": "None"
399
- },
400
- "name": "output",
401
- "position": "right"
402
  }
403
  },
404
  "params": {
405
  "save_as": {
 
 
406
  "type": {
407
  "type": "<class 'str'>"
408
- },
409
- "name": "save_as",
410
- "default": "prompt"
411
  },
412
  "template": {
413
  "default": null,
@@ -417,200 +908,120 @@
417
  }
418
  }
419
  },
420
- "type": "basic",
421
- "inputs": {
422
- "input": {
423
- "position": "left",
424
- "type": {
425
- "type": "<class 'inspect._empty'>"
426
- },
427
- "name": "input"
428
- }
429
- },
430
- "name": "Create prompt"
431
  },
432
- "__execution_delay": 0.0
433
- },
434
- "position": {
435
- "x": -55.639116348124276,
436
- "y": -180.9050378792738
437
  },
438
- "parentId": null,
439
  "dragging": false,
440
- "width": 321.0,
 
441
  "measured": {
442
  "height": 322.0,
443
  "width": 321.0
444
  },
445
- "height": 322.0
 
 
 
 
 
 
446
  },
447
  {
448
- "id": "Create prompt 2",
449
- "type": "basic",
450
  "data": {
451
- "title": "Create prompt",
452
- "params": {
453
- "template": "Is this a nice solution? {{response}}"
454
- },
455
  "display": null,
456
  "error": null,
457
- "__execution_delay": 0.0,
458
  "meta": {
459
  "inputs": {
460
  "input": {
461
  "name": "input",
 
462
  "type": {
463
  "type": "<class 'inspect._empty'>"
464
- },
465
- "position": "left"
466
  }
467
  },
 
468
  "outputs": {
469
  "output": {
 
 
470
  "type": {
471
  "type": "None"
472
- },
473
- "position": "right",
474
- "name": "output"
475
  }
476
  },
477
  "params": {
478
  "save_as": {
479
- "name": "save_as",
480
  "default": "prompt",
 
481
  "type": {
482
  "type": "<class 'str'>"
483
  }
484
  },
485
  "template": {
 
486
  "name": "template",
487
  "type": {
488
  "format": "textarea"
489
- },
490
- "default": null
491
  }
492
  },
493
- "name": "Create prompt",
494
  "type": "basic"
495
  },
496
- "collapsed": null
497
- },
498
- "position": {
499
- "x": 916.0813218020223,
500
- "y": 27.604649145022677
501
  },
502
- "width": 292.0,
503
  "dragging": false,
504
- "parentId": null,
 
505
  "measured": {
506
  "height": 278.0,
507
  "width": 292.0
508
  },
509
- "height": 278.0
 
 
 
 
 
 
510
  },
511
  {
512
- "id": "View 3",
513
- "type": "table_view",
514
  "data": {
515
- "title": "View",
516
- "params": {},
517
- "display": {
518
- "dataframes": {
519
- "df": {
520
- "columns": [
521
- "id",
522
- "text",
523
- "answer",
524
- "prompt",
525
- "response",
526
- "iterations-Loop 1"
527
- ],
528
- "data": [
529
- [
530
- "229ee8",
531
- "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
532
- 52,
533
- "Is this a nice solution? To solve this problem, we need to follow these steps:\n\n1. **Understand the Parabola and Line Intersection:**\n The parabola is given by \\( y = kx^2 - 2kx + l \\).\n The line is given by \\( y = 4 \\).\n\n2. **Find the Intersection Points:**\n Set the equations equal to each other to find the points of intersection \\( A \\) and \\( B \\):\n ",
534
- "To solve this problem, we need to set the equation of the parabola equal to the equation of the line and solve for the points of intersection. Let's break it down into the steps you've outlined and use Python with SymPy to find the solution.\n\n### Steps:\n\n1. **Understand the Parabola and Line Intersection:**\n - The equation of the parabola is \\( y = kx^2 - 2kx + l \\).\n - The",
535
- 3
536
- ],
537
- [
538
- "246d26",
539
- "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
540
- 250,
541
- "Is this a nice solution? To solve this problem, we need to ensure that any two yellow numbers have a sum that is a blue number. \n\nLet's break down the problem:\n\n1. **Understand the problem constraints:**\n - We have three-digit numbers ranging from 111 to 999.\n - Each number must be colored either blue or yellow.\n - The sum of any two yellow numbers must be a blue number.\n\n2. **Define the variables:**\n -",
542
- "To solve this problem, we need to ensure that for any two yellow numbers, their sum falls within the range of blue numbers. Let's break down the problem step-by-step.\n\n### Problem Breakdown\n\n1. **Define the Variables:**\n - Let \\( Y \\) be a set of three-digit yellow numbers.\n - Let \\( B \\) be a set of three-digit blue numbers.\n - Let \\( \\text{Sum}(a",
543
- 3
544
- ],
545
- [
546
- "2fc4ad",
547
- "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
548
- 702,
549
- "Is this a nice solution? Let's break down the problem step by step. \n\n**Understanding the Sparkle Operation:**\n\n1. **Sum of Digits:**\n For a number \\( n \\), the sum of its digits is calculated.\n\n2. **Factorial of Sum:**\n The sparkle is then calculated as \\( n! \\).\n\n**Special Numbers:**\n\nA special number is defined as one that eventually leads to every subsequent number being less than 6. This implies",
550
- "The solution you've provided for calculating a Sparkle number is a structured approach to solving the problem, but it could be improved in several ways to ensure clarity, efficiency, and completeness. Let's break down the steps and identify potential improvements:\n\n1. **Understanding the Problem:**\n - **Sum of Digits:** Calculate the sum of the digits of a number \\( n \\).\n - **Factorial Calculation:** Compute the factorial of the sum of digits.\n\n2",
551
- 3
552
- ],
553
- [
554
- "430b63",
555
- "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
556
- 800,
557
- "Is this a nice solution? To solve the problem, we need to find the minimum value of the expression \\(5x^2 + 5y^2 - 8xy\\) subject to the constraint \\(|x - 2y| + |y - 2x| = 40\\).\n\nHere are the steps to solve this problem:\n\n1. **Understand the Constraint:**\n The constraint given is \\(|x - 2y| + |y - 2",
558
- "To solve this optimization problem with the given constraint, we can use the method of Lagrange multipliers. This technique is useful when we have a function to maximize or minimize subject to equality constraints.\n\nGiven:\n\\[ f(x, y) = 5x^2 + 5y^2 - 8xy \\]\n\\[ g(x, y) = |x - 2y| + |y - 2x| = 40 \\",
559
- 3
560
- ],
561
- [
562
- "5277ed",
563
- "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
564
- 211,
565
- "Is this a nice solution? To solve this problem, we need to find a unique increasing geometric sequence of five 2-digit positive integers. Let's denote the first term of the sequence by \\( a \\) and the common ratio by \\( r \\). The five terms of the sequence can be represented as:\n\n\\[ a, ar, ar^2, ar^3, ar^4 \\]\n\nGiven that all these terms are 2-digit positive integers, we need to find \\",
566
- "To solve the problem of finding a unique increasing geometric sequence of five 2-digit positive integers \\(a, ar, ar^2, ar^3, ar^4\\), we can follow these steps:\n\n1. **Understand the Problem:**\n We need to find \\(a\\) and \\(r\\) such that \\(a, ar, ar^2, ar^3, ar^4\\) are all 2-digit positive integers. Let",
567
- 3
568
- ],
569
- [
570
- "739bc9",
571
- "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
572
- 199,
573
- "Is this a nice solution? To solve the problem, we need to analyze the equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac{m}{100}\\) and determine for how many positive integers \\(m\\) the equation has exactly 4 distinct solutions.\n\n### Steps to Solve the Problem:\n\n1. **Understand the Absolute Value Equation:**\n - The equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac",
574
- "To solve the problem, we need to determine the number of positive integers \\( m \\) for which the equation \\(\\vert \\vert x-1 \\vert - 2 \\vert = \\frac{m}{100}\\) has exactly 4 distinct solutions for \\( x \\).\n\n### Step-by-Step Solution:\n\n1. **Analyze the Absolute Value Equation:**\n The equation \\(\\vert \\vert x-1 \\vert - 2 \\",
575
- 3
576
- ],
577
- [
578
- "82e2a0",
579
- "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
580
- 185,
581
- "Is this a nice solution? To solve this problem, we need to determine the probability \\(\\frac{a}{b}\\) that the highest roll on four 6-sided dice is a 5, and then find the values of \\(a\\) and \\(b\\) such that \\(a\\) and \\(b\\) are relatively prime. Let's break down the steps:\n\n1. **Determine the Sample Space:**\n - Calculate the total number of possible outcomes when rolling four ",
582
- "Sure, to determine if the solution provided is \"nice\" in the context of being clear, concise, and well-organized, let's evaluate the solution for clarity and completeness:\n\n### Solution Breakdown\n\n1. **Determine the Sample Space:**\n - **Calculate the Total Number of Possible Outcomes:**\n Rolling four 6-sided dice means each die has 6 possible outcomes. Therefore, the total number of possible outcomes is:\n \\[\n 6 \\times ",
583
- 3
584
- ],
585
- [
586
- "8ee6f3",
587
- "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
588
- 320,
589
- "Is this a nice solution? To solve this problem, we need to find the points \\((x, y)\\) that satisfy the given equation:\n\\[\n((\\text{Abs}(x + y) - 10)^2 + (\\text{Abs}(x - y) - 10)^2)((\\text{Abs}(x) - 8)^2 + (\\text{Abs}(y) - 8)^2) = 0\n\\]\n\nFirst,",
590
- "To determine if the given solution is \"nice\" (i.e., provides integer or simple coordinates), we need to analyze the equation:\n\n\\[\n((\\text{Abs}(x + y) - 10)^2 + (\\text{Abs}(x - y) - 10)^2)((\\text{Abs}(x) - 8)^2 + (\\text{Abs}(y) - 8)^2) = 0\n",
591
- 3
592
- ],
593
- [
594
- "bedda4",
595
- "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
596
- 480,
597
- "Is this a nice solution? To solve this problem, we need to carefully analyze the geometric configuration and calculate the areas of the four regions formed by the lines \\(DP\\) and \\(BQ\\) within the unit square \\(ABCD\\).\n\nLet's break down the problem into manageable parts:\n\n1. **Define the Coordinates:**\n - Place the unit square \\(ABCD\\) in the coordinate plane with \\(A\\) at \\((0, 0)\\),",
598
- "Yes, this is a nice and clear solution to the problem of calculating the areas of the four regions formed by the lines \\(DP\\) and \\(BQ\\) within a unit square \\(ABCD\\). Here's a step-by-step breakdown of the approach:\n\n1. **Define the Coordinates:**\n - Place the unit square \\(ABCD\\) in the coordinate plane with \\(A\\) at \\((0, 0)\\),",
599
- 3
600
- ],
601
- [
602
- "d7e9c9",
603
- "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
604
- 199,
605
- "Is this a nice solution? To solve the problem, we need to find the function \\( f \\) that satisfies the given conditions:\n\n1. \\( f(f(f(n))) = 8n - 7 \\)\n2. \\( f(2n) = 2f(n) + 1 \\)\n\nLet's break down the problem step-by-step:\n\n### Step 1: Analyze the Recursion\n\nFirst, let's express",
606
- "To solve the problem, we need to find a function \\( f \\) that satisfies the given conditions:\n\n1. \\( f(f(f(n))) = 8n - 7 \\)\n2. \\( f(2n) = 2f(n) + 1 \\)\n\nLet's break down the problem step-by-step:\n\n### Step 1: Analyze the Recursion\n\nGiven the recursive nature of",
607
- 3
608
- ]
609
- ]
610
  }
611
- }
 
 
 
 
612
  },
613
- "error": null,
 
 
614
  "view": {
615
  "dataframes": {
616
  "df": {
@@ -695,345 +1106,382 @@
695
  ]
696
  }
697
  }
698
- },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699
  "meta": {
700
- "name": "View",
701
- "type": "table_view",
702
- "params": {},
703
  "inputs": {
704
  "input": {
 
 
705
  "type": {
706
  "type": "<class 'inspect._empty'>"
707
- },
708
- "name": "input",
709
- "position": "left"
710
  }
711
  },
712
- "outputs": {}
713
- }
714
- },
715
- "position": {
716
- "x": 1997.201620358635,
717
- "y": -45.77336526660309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718
  },
719
- "height": 599.0,
720
  "dragging": false,
721
- "width": 1046.0,
 
722
  "measured": {
723
- "height": 599.0,
724
- "width": 1046.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
725
  },
726
- "parentId": null
 
727
  },
728
  {
729
- "id": "Loop 1",
730
- "type": "basic",
731
  "data": {
732
- "title": "Loop",
733
- "params": {
734
- "max_iterations": 10.0
735
- },
736
  "display": null,
737
- "error": null,
 
738
  "meta": {
 
 
 
 
 
 
 
 
 
 
739
  "outputs": {
740
  "output": {
 
 
741
  "type": {
742
  "type": "None"
743
- },
744
- "position": "left",
745
- "name": "output"
746
  }
747
  },
748
- "name": "Loop",
749
  "params": {
750
- "max_iterations": {
751
- "default": 3.0,
 
752
  "type": {
753
- "type": "<class 'int'>"
754
- },
755
- "name": "max_iterations"
756
- }
757
- },
758
- "inputs": {
759
- "input": {
760
- "name": "input",
761
  "type": {
762
- "type": "<class 'inspect._empty'>"
763
- },
764
- "position": "right"
765
  }
766
  },
767
  "type": "basic"
768
- }
 
 
 
 
 
 
 
769
  },
 
 
 
770
  "position": {
771
- "x": 174.3218329398557,
772
- "y": 350.51597142125047
773
  },
774
- "width": 362.0,
775
- "height": 175.0,
776
- "parentId": null,
777
- "dragging": false,
778
- "measured": {
779
- "height": 175.0,
780
- "width": 362.0
781
- }
782
  },
783
  {
784
- "id": "Input CSV 1",
785
- "type": "basic",
786
  "data": {
787
- "title": "Input CSV",
788
- "params": {
789
- "filename": "uploads/aimo-examples.csv",
790
- "key": "problem"
791
- },
792
  "display": null,
793
  "error": null,
 
794
  "meta": {
 
 
 
 
 
 
 
 
 
 
795
  "outputs": {
796
  "output": {
 
 
797
  "type": {
798
  "type": "None"
799
- },
800
- "position": "right",
801
- "name": "output"
802
  }
803
  },
804
- "inputs": {},
805
  "params": {
806
- "filename": {
 
 
807
  "type": {
808
- "format": "path"
809
- },
810
- "name": "filename",
811
- "default": null
812
  },
813
- "key": {
 
 
814
  "type": {
815
- "type": "<class 'str'>"
816
- },
817
- "name": "key",
818
- "default": null
819
  }
820
  },
821
- "name": "Input CSV",
822
- "position": {
823
- "y": 108.0,
824
- "x": 297.0
825
- },
826
  "type": "basic"
827
  },
828
- "__execution_delay": 0.0,
829
- "collapsed": null
 
 
 
 
 
830
  },
 
 
 
831
  "position": {
832
- "x": -679.7002594023377,
833
- "y": -415.71560732240505
834
  },
835
- "width": 344.0,
836
- "height": 302.0
837
  },
838
  {
839
- "id": "Ask LLM 3",
840
- "type": "basic",
841
  "data": {
842
- "title": "Ask LLM",
843
- "params": {
844
- "model": "SultanR/SmolTulu-1.7b-Instruct",
845
- "accepted_regex": null,
846
- "max_tokens": 100.0
847
- },
848
  "display": null,
849
  "error": null,
 
850
  "meta": {
851
- "position": {
852
- "x": 822.0,
853
- "y": 124.0
854
- },
855
- "outputs": {
856
- "output": {
857
- "type": {
858
- "type": "None"
859
- },
860
- "name": "output",
861
- "position": "right"
862
- }
863
- },
864
  "inputs": {
865
  "input": {
866
  "name": "input",
 
867
  "type": {
868
  "type": "<class 'inspect._empty'>"
869
- },
870
- "position": "left"
871
  }
872
  },
873
- "params": {
874
- "accepted_regex": {
875
- "default": null,
876
- "name": "accepted_regex",
 
877
  "type": {
878
- "type": "<class 'str'>"
879
  }
880
  },
881
- "max_tokens": {
 
 
882
  "type": {
883
- "type": "<class 'int'>"
884
- },
885
- "default": 100.0,
886
- "name": "max_tokens"
887
- },
888
- "model": {
889
  "default": null,
 
890
  "type": {
891
  "type": "<class 'str'>"
892
- },
893
- "name": "model"
894
  }
895
  },
896
- "name": "Ask LLM",
 
 
 
897
  "type": "basic"
898
  },
899
- "collapsed": null,
900
- "__execution_delay": 0.0
 
 
 
901
  },
 
 
 
902
  "position": {
903
- "x": 404.2326800558385,
904
- "y": -173.5420967906593
905
  },
906
- "width": 372.0,
907
- "height": 331.0
908
  },
909
  {
910
- "id": "Ask LLM 1",
911
- "type": "basic",
912
  "data": {
913
- "title": "Ask LLM",
914
- "params": {
915
- "model": "SultanR/SmolTulu-1.7b-Instruct",
916
- "accepted_regex": "yes|no",
917
- "max_tokens": "100"
918
- },
919
  "display": null,
920
- "error": null,
 
921
  "meta": {
 
 
922
  "outputs": {
923
  "output": {
924
- "position": "right",
925
  "name": "output",
 
926
  "type": {
927
  "type": "None"
928
  }
929
  }
930
  },
931
- "name": "Ask LLM",
932
- "inputs": {
933
- "input": {
934
- "name": "input",
935
- "type": {
936
- "type": "<class 'inspect._empty'>"
937
- },
938
- "position": "left"
939
- }
940
- },
941
  "params": {
942
- "max_tokens": {
943
- "default": 100.0,
944
- "type": {
945
- "type": "<class 'int'>"
946
- },
947
- "name": "max_tokens"
948
- },
949
- "accepted_regex": {
950
- "type": {
951
- "type": "<class 'str'>"
952
- },
953
  "default": null,
954
- "name": "accepted_regex"
 
 
 
955
  },
956
- "model": {
957
  "default": null,
 
958
  "type": {
959
  "type": "<class 'str'>"
960
- },
961
- "name": "model"
962
  }
963
  },
964
- "type": "basic",
965
  "position": {
966
- "y": 509.0,
967
- "x": 868.0
968
- }
 
969
  },
970
- "collapsed": null,
971
- "__execution_delay": 0.0
 
 
 
 
972
  },
 
 
 
973
  "position": {
974
- "x": 1382.8452916325896,
975
- "y": 6.3459091373125105
976
  },
977
- "width": 408.0,
978
- "height": 328.0
979
- }
980
- ],
981
- "edges": [
982
- {
983
- "id": "Input CSV 1 View 2",
984
- "source": "Input CSV 1",
985
- "target": "View 2",
986
- "sourceHandle": "output",
987
- "targetHandle": "input"
988
- },
989
- {
990
- "id": "Input CSV 1 Create prompt 1",
991
- "source": "Input CSV 1",
992
- "target": "Create prompt 1",
993
- "sourceHandle": "output",
994
- "targetHandle": "input"
995
- },
996
- {
997
- "id": "Create prompt 1 Ask LLM 3",
998
- "source": "Create prompt 1",
999
- "target": "Ask LLM 3",
1000
- "sourceHandle": "output",
1001
- "targetHandle": "input"
1002
- },
1003
- {
1004
- "id": "Ask LLM 3 Create prompt 2",
1005
- "source": "Ask LLM 3",
1006
- "target": "Create prompt 2",
1007
- "sourceHandle": "output",
1008
- "targetHandle": "input"
1009
- },
1010
- {
1011
- "id": "Ask LLM 3 Loop 1",
1012
- "source": "Ask LLM 3",
1013
- "target": "Loop 1",
1014
- "sourceHandle": "output",
1015
- "targetHandle": "input"
1016
- },
1017
- {
1018
- "id": "Ask LLM 3 View 1",
1019
- "source": "Ask LLM 3",
1020
- "target": "View 1",
1021
- "sourceHandle": "output",
1022
- "targetHandle": "input"
1023
- },
1024
- {
1025
- "id": "Create prompt 2 Ask LLM 1",
1026
- "source": "Create prompt 2",
1027
- "target": "Ask LLM 1",
1028
- "sourceHandle": "output",
1029
- "targetHandle": "input"
1030
- },
1031
- {
1032
- "id": "Ask LLM 1 View 3",
1033
- "source": "Ask LLM 1",
1034
- "target": "View 3",
1035
- "sourceHandle": "output",
1036
- "targetHandle": "input"
1037
  }
1038
  ]
1039
  }
 
1
  {
2
+ "edges": [
3
+ {
4
+ "id": "Input CSV 1 View 2",
5
+ "source": "Input CSV 1",
6
+ "sourceHandle": "output",
7
+ "target": "View 2",
8
+ "targetHandle": "input"
9
+ },
10
+ {
11
+ "id": "Input CSV 1 Create prompt 1",
12
+ "source": "Input CSV 1",
13
+ "sourceHandle": "output",
14
+ "target": "Create prompt 1",
15
+ "targetHandle": "input"
16
+ },
17
+ {
18
+ "id": "Create prompt 1 Ask LLM 3",
19
+ "source": "Create prompt 1",
20
+ "sourceHandle": "output",
21
+ "target": "Ask LLM 3",
22
+ "targetHandle": "input"
23
+ },
24
+ {
25
+ "id": "Ask LLM 3 Create prompt 2",
26
+ "source": "Ask LLM 3",
27
+ "sourceHandle": "output",
28
+ "target": "Create prompt 2",
29
+ "targetHandle": "input"
30
+ },
31
+ {
32
+ "id": "Ask LLM 3 View 1",
33
+ "source": "Ask LLM 3",
34
+ "sourceHandle": "output",
35
+ "target": "View 1",
36
+ "targetHandle": "input"
37
+ },
38
+ {
39
+ "id": "Create prompt 2 Ask LLM 1",
40
+ "source": "Create prompt 2",
41
+ "sourceHandle": "output",
42
+ "target": "Ask LLM 1",
43
+ "targetHandle": "input"
44
+ },
45
+ {
46
+ "id": "Loop 1 Create prompt 1",
47
+ "source": "Loop 1",
48
+ "sourceHandle": "output",
49
+ "target": "Create prompt 1",
50
+ "targetHandle": "input"
51
+ },
52
+ {
53
+ "id": "Ask LLM 1 Branch 1",
54
+ "source": "Ask LLM 1",
55
+ "sourceHandle": "output",
56
+ "target": "Branch 1",
57
+ "targetHandle": "input"
58
+ },
59
+ {
60
+ "id": "Branch 1 View 3",
61
+ "source": "Branch 1",
62
+ "sourceHandle": "true",
63
+ "target": "View 3",
64
+ "targetHandle": "input"
65
+ },
66
+ {
67
+ "id": "Branch 1 Loop 1",
68
+ "source": "Branch 1",
69
+ "sourceHandle": "false",
70
+ "target": "Loop 1",
71
+ "targetHandle": "input"
72
+ },
73
+ {
74
+ "id": "Input CSV 2 Create prompt 1",
75
+ "source": "Input CSV 2",
76
+ "sourceHandle": "output",
77
+ "target": "Create prompt 1",
78
+ "targetHandle": "input"
79
+ }
80
+ ],
81
  "env": "LLM logic",
82
  "nodes": [
83
  {
 
 
84
  "data": {
85
+ "display": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  "error": null,
87
+ "input_metadata": null,
88
  "meta": {
 
 
89
  "inputs": {
90
  "input": {
91
+ "name": "input",
92
+ "position": "left",
93
  "type": {
94
  "type": "<class 'inspect._empty'>"
95
+ }
 
 
96
  }
97
  },
98
  "name": "View",
99
+ "outputs": {},
100
+ "params": {},
101
+ "type": "table_view"
102
  },
103
+ "params": {},
104
+ "status": "done",
105
+ "title": "View",
106
  "view": {
107
  "dataframes": {
108
  "df": {
 
189
  }
190
  }
191
  },
192
+ "dragHandle": ".bg-primary",
 
 
 
 
193
  "dragging": false,
194
+ "height": 497.0,
195
+ "id": "View 1",
196
  "measured": {
197
  "height": 497.0,
198
  "width": 847.0
199
  },
200
  "parentId": null,
201
+ "position": {
202
+ "x": 918.8473117253317,
203
+ "y": -788.2139000963755
204
+ },
205
+ "type": "table_view",
206
  "width": 847.0
207
  },
208
  {
 
 
209
  "data": {
 
 
210
  "display": {
211
  "dataframes": {
212
  "df": {
 
265
  "d7e9c9",
266
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
267
  199
268
+ ],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  [
270
+ "246d26",
271
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
272
+ 250
273
+ ],
274
+ [
275
+ "2fc4ad",
276
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
277
+ 702
278
+ ],
279
+ [
280
+ "430b63",
281
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
282
+ 800
283
+ ],
284
+ [
285
+ "5277ed",
286
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
287
+ 211
288
+ ],
289
+ [
290
+ "739bc9",
291
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
292
+ 199
293
+ ],
294
+ [
295
+ "82e2a0",
296
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
297
+ 185
298
+ ],
299
+ [
300
+ "8ee6f3",
301
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
302
+ 320
303
+ ],
304
+ [
305
+ "bedda4",
306
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
307
+ 480
308
+ ],
309
+ [
310
+ "d7e9c9",
311
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
312
+ 199
313
  ],
314
  [
315
  "246d26",
316
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
317
+ 250
318
  ],
319
  [
320
  "2fc4ad",
321
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
322
+ 702
323
  ],
324
  [
325
  "430b63",
326
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
327
+ 800
328
  ],
329
  [
330
  "5277ed",
331
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
332
+ 211
333
  ],
334
  [
335
  "739bc9",
336
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
337
+ 199
338
  ],
339
  [
340
  "82e2a0",
341
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
342
+ 185
343
  ],
344
  [
345
  "8ee6f3",
346
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
347
+ 320
348
  ],
349
  [
350
  "bedda4",
351
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
352
+ 480
353
  ],
354
  [
355
  "d7e9c9",
356
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
357
+ 199
358
+ ],
359
+ [
360
+ "246d26",
361
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
362
+ 250
363
+ ],
364
+ [
365
+ "2fc4ad",
366
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
367
+ 702
368
+ ],
369
+ [
370
+ "430b63",
371
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
372
+ 800
373
+ ],
374
+ [
375
+ "5277ed",
376
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
377
+ 211
378
+ ],
379
+ [
380
+ "739bc9",
381
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
382
+ 199
383
+ ],
384
+ [
385
+ "82e2a0",
386
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
387
+ 185
388
+ ],
389
+ [
390
+ "8ee6f3",
391
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
392
+ 320
393
+ ],
394
+ [
395
+ "bedda4",
396
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
397
+ 480
398
+ ],
399
+ [
400
+ "d7e9c9",
401
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
402
+ 199
403
+ ],
404
+ [
405
+ "246d26",
406
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
407
+ 250
408
+ ],
409
+ [
410
+ "2fc4ad",
411
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
412
+ 702
413
+ ],
414
+ [
415
+ "430b63",
416
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
417
+ 800
418
+ ],
419
+ [
420
+ "5277ed",
421
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
422
+ 211
423
+ ],
424
+ [
425
+ "739bc9",
426
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
427
+ 199
428
+ ],
429
+ [
430
+ "82e2a0",
431
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
432
+ 185
433
+ ],
434
+ [
435
+ "8ee6f3",
436
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
437
+ 320
438
+ ],
439
+ [
440
+ "bedda4",
441
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
442
+ 480
443
+ ],
444
+ [
445
+ "d7e9c9",
446
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
447
+ 199
448
+ ],
449
+ [
450
+ "246d26",
451
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
452
+ 250
453
+ ],
454
+ [
455
+ "2fc4ad",
456
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
457
+ 702
458
+ ],
459
+ [
460
+ "430b63",
461
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
462
+ 800
463
+ ],
464
+ [
465
+ "5277ed",
466
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
467
+ 211
468
+ ],
469
+ [
470
+ "739bc9",
471
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
472
+ 199
473
+ ],
474
+ [
475
+ "82e2a0",
476
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
477
+ 185
478
+ ],
479
+ [
480
+ "8ee6f3",
481
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
482
+ 320
483
+ ],
484
+ [
485
+ "bedda4",
486
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
487
+ 480
488
+ ],
489
+ [
490
+ "d7e9c9",
491
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
492
+ 199
493
+ ],
494
+ [
495
+ "246d26",
496
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
497
+ 250
498
+ ],
499
+ [
500
+ "2fc4ad",
501
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
502
+ 702
503
+ ],
504
+ [
505
+ "430b63",
506
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
507
+ 800
508
+ ],
509
+ [
510
+ "5277ed",
511
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
512
+ 211
513
+ ],
514
+ [
515
+ "739bc9",
516
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
517
+ 199
518
+ ],
519
+ [
520
+ "82e2a0",
521
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
522
+ 185
523
+ ],
524
+ [
525
+ "8ee6f3",
526
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
527
+ 320
528
+ ],
529
+ [
530
+ "bedda4",
531
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
532
+ 480
533
+ ],
534
+ [
535
+ "d7e9c9",
536
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
537
+ 199
538
+ ],
539
+ [
540
+ "246d26",
541
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
542
+ 250
543
+ ],
544
+ [
545
+ "2fc4ad",
546
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
547
+ 702
548
+ ],
549
+ [
550
+ "430b63",
551
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
552
+ 800
553
+ ],
554
+ [
555
+ "5277ed",
556
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
557
+ 211
558
+ ],
559
+ [
560
+ "739bc9",
561
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
562
+ 199
563
+ ],
564
+ [
565
+ "82e2a0",
566
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
567
+ 185
568
+ ],
569
+ [
570
+ "8ee6f3",
571
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
572
+ 320
573
+ ],
574
+ [
575
+ "bedda4",
576
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
577
+ 480
578
+ ],
579
+ [
580
+ "d7e9c9",
581
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
582
+ 199
583
+ ],
584
+ [
585
+ "246d26",
586
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
587
+ 250
588
+ ],
589
+ [
590
+ "2fc4ad",
591
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
592
+ 702
593
+ ],
594
+ [
595
+ "430b63",
596
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
597
+ 800
598
+ ],
599
+ [
600
+ "5277ed",
601
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
602
+ 211
603
+ ],
604
+ [
605
+ "739bc9",
606
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
607
+ 199
608
+ ],
609
+ [
610
+ "82e2a0",
611
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
612
+ 185
613
+ ],
614
+ [
615
+ "8ee6f3",
616
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
617
+ 320
618
+ ],
619
+ [
620
+ "bedda4",
621
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
622
+ 480
623
+ ],
624
+ [
625
+ "d7e9c9",
626
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
627
+ 199
628
+ ],
629
+ [
630
+ "246d26",
631
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
632
+ 250
633
+ ],
634
+ [
635
+ "2fc4ad",
636
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
637
+ 702
638
+ ],
639
+ [
640
+ "430b63",
641
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
642
+ 800
643
+ ],
644
+ [
645
+ "5277ed",
646
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
647
+ 211
648
+ ],
649
+ [
650
+ "739bc9",
651
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
652
+ 199
653
+ ],
654
+ [
655
+ "82e2a0",
656
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
657
+ 185
658
+ ],
659
+ [
660
+ "8ee6f3",
661
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
662
+ 320
663
+ ],
664
+ [
665
+ "bedda4",
666
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
667
+ 480
668
+ ],
669
+ [
670
+ "d7e9c9",
671
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
672
+ 199
673
+ ],
674
+ [
675
+ "246d26",
676
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
677
+ 250
678
+ ],
679
+ [
680
+ "2fc4ad",
681
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
682
+ 702
683
+ ],
684
+ [
685
+ "430b63",
686
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
687
+ 800
688
+ ],
689
+ [
690
+ "5277ed",
691
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
692
+ 211
693
+ ],
694
+ [
695
+ "739bc9",
696
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
697
+ 199
698
+ ],
699
+ [
700
+ "82e2a0",
701
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
702
+ 185
703
+ ],
704
+ [
705
+ "8ee6f3",
706
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
707
+ 320
708
+ ],
709
+ [
710
+ "bedda4",
711
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
712
+ 480
713
+ ],
714
+ [
715
+ "d7e9c9",
716
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
717
+ 199
718
+ ],
719
+ [
720
+ "246d26",
721
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
722
+ 250
723
+ ],
724
+ [
725
+ "2fc4ad",
726
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
727
+ 702
728
+ ],
729
+ [
730
+ "430b63",
731
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
732
+ 800
733
+ ],
734
+ [
735
+ "5277ed",
736
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
737
+ 211
738
+ ],
739
+ [
740
+ "739bc9",
741
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
742
+ 199
743
+ ],
744
+ [
745
+ "82e2a0",
746
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
747
+ 185
748
+ ],
749
+ [
750
+ "8ee6f3",
751
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
752
+ 320
753
+ ],
754
+ [
755
+ "bedda4",
756
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
757
+ 480
758
+ ],
759
+ [
760
+ "d7e9c9",
761
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
762
+ 199
763
+ ]
764
+ ]
765
+ }
766
+ }
767
+ },
768
+ "error": null,
769
+ "input_metadata": null,
770
+ "meta": {
771
+ "inputs": {
772
+ "input": {
773
+ "name": "input",
774
+ "position": "left",
775
+ "type": {
776
+ "type": "<class 'inspect._empty'>"
777
+ }
778
+ }
779
+ },
780
+ "name": "View",
781
+ "outputs": {},
782
+ "params": {},
783
+ "type": "table_view"
784
+ },
785
+ "params": {},
786
+ "status": "done",
787
+ "title": "View",
788
+ "view": {
789
+ "dataframes": {
790
+ "df": {
791
+ "columns": [
792
+ "id",
793
+ "text",
794
+ "answer"
795
+ ],
796
+ "data": [
797
+ [
798
+ "229ee8",
799
+ "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
800
+ 52.0
801
+ ],
802
+ [
803
+ "246d26",
804
+ "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
805
+ 250.0
806
+ ],
807
+ [
808
+ "2fc4ad",
809
+ "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
810
+ 702.0
811
+ ],
812
+ [
813
+ "430b63",
814
+ "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
815
+ 800.0
816
+ ],
817
+ [
818
+ "5277ed",
819
+ "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
820
+ 211.0
821
+ ],
822
+ [
823
+ "739bc9",
824
+ "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
825
+ 199.0
826
+ ],
827
+ [
828
+ "82e2a0",
829
+ "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
830
+ 185.0
831
+ ],
832
+ [
833
+ "8ee6f3",
834
+ "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
835
+ 320.0
836
+ ],
837
+ [
838
+ "bedda4",
839
+ "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
840
+ 480.0
841
+ ],
842
+ [
843
+ "d7e9c9",
844
+ "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
845
+ 199.0
846
+ ]
847
+ ]
848
+ }
849
+ }
850
  }
851
  },
852
+ "dragHandle": ".bg-primary",
 
 
 
 
853
  "dragging": false,
854
+ "height": 491.0,
855
+ "id": "View 2",
856
  "measured": {
857
+ "height": 491.0,
858
+ "width": 642.0
859
  },
860
  "parentId": null,
861
+ "position": {
862
+ "x": -109.39082282780262,
863
+ "y": -773.6298092973026
864
+ },
865
+ "type": "table_view",
866
  "width": 642.0
867
  },
868
  {
 
 
869
  "data": {
870
+ "__execution_delay": 0.0,
871
+ "collapsed": null,
 
 
872
  "display": null,
873
  "error": null,
874
+ "input_metadata": null,
875
  "meta": {
876
+ "inputs": {
877
+ "input": {
878
+ "name": "input",
879
+ "position": "left",
880
+ "type": {
881
+ "type": "<class 'inspect._empty'>"
882
+ }
883
+ }
884
+ },
885
+ "name": "Create prompt",
886
  "outputs": {
887
  "output": {
888
+ "name": "output",
889
+ "position": "right",
890
  "type": {
891
  "type": "None"
892
+ }
 
 
893
  }
894
  },
895
  "params": {
896
  "save_as": {
897
+ "default": "prompt",
898
+ "name": "save_as",
899
  "type": {
900
  "type": "<class 'str'>"
901
+ }
 
 
902
  },
903
  "template": {
904
  "default": null,
 
908
  }
909
  }
910
  },
911
+ "type": "basic"
 
 
 
 
 
 
 
 
 
 
912
  },
913
+ "params": {
914
+ "template": "Please give a correct solution for this: {{text}}"
915
+ },
916
+ "status": "done",
917
+ "title": "Create prompt"
918
  },
919
+ "dragHandle": ".bg-primary",
920
  "dragging": false,
921
+ "height": 322.0,
922
+ "id": "Create prompt 1",
923
  "measured": {
924
  "height": 322.0,
925
  "width": 321.0
926
  },
927
+ "parentId": null,
928
+ "position": {
929
+ "x": -55.639116348124276,
930
+ "y": -180.9050378792738
931
+ },
932
+ "type": "basic",
933
+ "width": 321.0
934
  },
935
  {
 
 
936
  "data": {
937
+ "__execution_delay": 0.0,
938
+ "collapsed": null,
 
 
939
  "display": null,
940
  "error": null,
941
+ "input_metadata": null,
942
  "meta": {
943
  "inputs": {
944
  "input": {
945
  "name": "input",
946
+ "position": "left",
947
  "type": {
948
  "type": "<class 'inspect._empty'>"
949
+ }
 
950
  }
951
  },
952
+ "name": "Create prompt",
953
  "outputs": {
954
  "output": {
955
+ "name": "output",
956
+ "position": "right",
957
  "type": {
958
  "type": "None"
959
+ }
 
 
960
  }
961
  },
962
  "params": {
963
  "save_as": {
 
964
  "default": "prompt",
965
+ "name": "save_as",
966
  "type": {
967
  "type": "<class 'str'>"
968
  }
969
  },
970
  "template": {
971
+ "default": null,
972
  "name": "template",
973
  "type": {
974
  "format": "textarea"
975
+ }
 
976
  }
977
  },
 
978
  "type": "basic"
979
  },
980
+ "params": {
981
+ "template": "Is this a nice solution? {{response}}"
982
+ },
983
+ "status": "done",
984
+ "title": "Create prompt"
985
  },
986
+ "dragHandle": ".bg-primary",
987
  "dragging": false,
988
+ "height": 278.0,
989
+ "id": "Create prompt 2",
990
  "measured": {
991
  "height": 278.0,
992
  "width": 292.0
993
  },
994
+ "parentId": null,
995
+ "position": {
996
+ "x": 916.0813218020223,
997
+ "y": 27.604649145022677
998
+ },
999
+ "type": "basic",
1000
+ "width": 292.0
1001
  },
1002
  {
 
 
1003
  "data": {
1004
+ "display": null,
1005
+ "error": null,
1006
+ "input_metadata": null,
1007
+ "meta": {
1008
+ "inputs": {
1009
+ "input": {
1010
+ "name": "input",
1011
+ "position": "left",
1012
+ "type": {
1013
+ "type": "<class 'inspect._empty'>"
1014
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
  }
1016
+ },
1017
+ "name": "View",
1018
+ "outputs": {},
1019
+ "params": {},
1020
+ "type": "table_view"
1021
  },
1022
+ "params": {},
1023
+ "status": "done",
1024
+ "title": "View",
1025
  "view": {
1026
  "dataframes": {
1027
  "df": {
 
1106
  ]
1107
  }
1108
  }
1109
+ }
1110
+ },
1111
+ "dragHandle": ".bg-primary",
1112
+ "dragging": false,
1113
+ "height": 599.0,
1114
+ "id": "View 3",
1115
+ "measured": {
1116
+ "height": 599.0,
1117
+ "width": 1046.0
1118
+ },
1119
+ "parentId": null,
1120
+ "position": {
1121
+ "x": 2410.827504505784,
1122
+ "y": 31.14053881034609
1123
+ },
1124
+ "type": "table_view",
1125
+ "width": 1046.0
1126
+ },
1127
+ {
1128
+ "data": {
1129
+ "display": null,
1130
+ "error": null,
1131
+ "input_metadata": null,
1132
  "meta": {
 
 
 
1133
  "inputs": {
1134
  "input": {
1135
+ "name": "input",
1136
+ "position": "right",
1137
  "type": {
1138
  "type": "<class 'inspect._empty'>"
1139
+ }
 
 
1140
  }
1141
  },
1142
+ "name": "Loop",
1143
+ "outputs": {
1144
+ "output": {
1145
+ "name": "output",
1146
+ "position": "left",
1147
+ "type": {
1148
+ "type": "None"
1149
+ }
1150
+ }
1151
+ },
1152
+ "params": {
1153
+ "max_iterations": {
1154
+ "default": 3.0,
1155
+ "name": "max_iterations",
1156
+ "type": {
1157
+ "type": "<class 'int'>"
1158
+ }
1159
+ }
1160
+ },
1161
+ "type": "basic"
1162
+ },
1163
+ "params": {
1164
+ "max_iterations": 10.0
1165
+ },
1166
+ "status": "done",
1167
+ "title": "Loop"
1168
  },
1169
+ "dragHandle": ".bg-primary",
1170
  "dragging": false,
1171
+ "height": 175.0,
1172
+ "id": "Loop 1",
1173
  "measured": {
1174
+ "height": 175.0,
1175
+ "width": 362.0
1176
+ },
1177
+ "parentId": null,
1178
+ "position": {
1179
+ "x": 174.3218329398557,
1180
+ "y": 350.51597142125047
1181
+ },
1182
+ "type": "basic",
1183
+ "width": 362.0
1184
+ },
1185
+ {
1186
+ "data": {
1187
+ "__execution_delay": 0.0,
1188
+ "collapsed": null,
1189
+ "display": null,
1190
+ "error": null,
1191
+ "input_metadata": null,
1192
+ "meta": {
1193
+ "inputs": {},
1194
+ "name": "Input CSV",
1195
+ "outputs": {
1196
+ "output": {
1197
+ "name": "output",
1198
+ "position": "right",
1199
+ "type": {
1200
+ "type": "None"
1201
+ }
1202
+ }
1203
+ },
1204
+ "params": {
1205
+ "filename": {
1206
+ "default": null,
1207
+ "name": "filename",
1208
+ "type": {
1209
+ "format": "path"
1210
+ }
1211
+ },
1212
+ "key": {
1213
+ "default": null,
1214
+ "name": "key",
1215
+ "type": {
1216
+ "type": "<class 'str'>"
1217
+ }
1218
+ }
1219
+ },
1220
+ "type": "basic"
1221
+ },
1222
+ "params": {
1223
+ "filename": "uploads/aimo-examples.csv",
1224
+ "key": "problem"
1225
+ },
1226
+ "status": "done",
1227
+ "title": "Input CSV"
1228
+ },
1229
+ "dragHandle": ".bg-primary",
1230
+ "height": 302.0,
1231
+ "id": "Input CSV 1",
1232
+ "position": {
1233
+ "x": -703.324866365345,
1234
+ "y": -417.29058111993885
1235
  },
1236
+ "type": "basic",
1237
+ "width": 344.0
1238
  },
1239
  {
 
 
1240
  "data": {
1241
+ "__execution_delay": 0.0,
1242
+ "collapsed": null,
 
 
1243
  "display": null,
1244
+ "error": "ask_llm() got an unexpected keyword argument 'model'",
1245
+ "input_metadata": null,
1246
  "meta": {
1247
+ "inputs": {
1248
+ "input": {
1249
+ "name": "input",
1250
+ "position": "left",
1251
+ "type": {
1252
+ "type": "<class 'inspect._empty'>"
1253
+ }
1254
+ }
1255
+ },
1256
+ "name": "Ask LLM",
1257
  "outputs": {
1258
  "output": {
1259
+ "name": "output",
1260
+ "position": "right",
1261
  "type": {
1262
  "type": "None"
1263
+ }
 
 
1264
  }
1265
  },
 
1266
  "params": {
1267
+ "accepted_regex": {
1268
+ "default": null,
1269
+ "name": "accepted_regex",
1270
  "type": {
1271
+ "type": "<class 'str'>"
1272
+ }
1273
+ },
1274
+ "max_tokens": {
1275
+ "default": 100.0,
1276
+ "name": "max_tokens",
 
 
1277
  "type": {
1278
+ "type": "<class 'int'>"
1279
+ }
 
1280
  }
1281
  },
1282
  "type": "basic"
1283
+ },
1284
+ "params": {
1285
+ "accepted_regex": null,
1286
+ "max_tokens": 100.0,
1287
+ "model": "SultanR/SmolTulu-1.7b-Instruct"
1288
+ },
1289
+ "status": "done",
1290
+ "title": "Ask LLM"
1291
  },
1292
+ "dragHandle": ".bg-primary",
1293
+ "height": 331.0,
1294
+ "id": "Ask LLM 3",
1295
  "position": {
1296
+ "x": 404.2326800558385,
1297
+ "y": -173.5420967906593
1298
  },
1299
+ "type": "basic",
1300
+ "width": 372.0
 
 
 
 
 
 
1301
  },
1302
  {
 
 
1303
  "data": {
1304
+ "__execution_delay": 0.0,
1305
+ "collapsed": null,
 
 
 
1306
  "display": null,
1307
  "error": null,
1308
+ "input_metadata": null,
1309
  "meta": {
1310
+ "inputs": {
1311
+ "input": {
1312
+ "name": "input",
1313
+ "position": "left",
1314
+ "type": {
1315
+ "type": "<class 'inspect._empty'>"
1316
+ }
1317
+ }
1318
+ },
1319
+ "name": "Ask LLM",
1320
  "outputs": {
1321
  "output": {
1322
+ "name": "output",
1323
+ "position": "right",
1324
  "type": {
1325
  "type": "None"
1326
+ }
 
 
1327
  }
1328
  },
 
1329
  "params": {
1330
+ "accepted_regex": {
1331
+ "default": null,
1332
+ "name": "accepted_regex",
1333
  "type": {
1334
+ "type": "<class 'str'>"
1335
+ }
 
 
1336
  },
1337
+ "max_tokens": {
1338
+ "default": 100.0,
1339
+ "name": "max_tokens",
1340
  "type": {
1341
+ "type": "<class 'int'>"
1342
+ }
 
 
1343
  }
1344
  },
 
 
 
 
 
1345
  "type": "basic"
1346
  },
1347
+ "params": {
1348
+ "accepted_regex": "yes|no",
1349
+ "max_tokens": "100",
1350
+ "model": "SultanR/SmolTulu-1.7b-Instruct"
1351
+ },
1352
+ "status": "done",
1353
+ "title": "Ask LLM"
1354
  },
1355
+ "dragHandle": ".bg-primary",
1356
+ "height": 328.0,
1357
+ "id": "Ask LLM 1",
1358
  "position": {
1359
+ "x": 1382.8452916325896,
1360
+ "y": 6.3459091373125105
1361
  },
1362
+ "type": "basic",
1363
+ "width": 408.0
1364
  },
1365
  {
 
 
1366
  "data": {
1367
+ "__execution_delay": 0.0,
1368
+ "collapsed": null,
 
 
 
 
1369
  "display": null,
1370
  "error": null,
1371
+ "input_metadata": null,
1372
  "meta": {
 
 
 
 
 
 
 
 
 
 
 
 
 
1373
  "inputs": {
1374
  "input": {
1375
  "name": "input",
1376
+ "position": "left",
1377
  "type": {
1378
  "type": "<class 'inspect._empty'>"
1379
+ }
 
1380
  }
1381
  },
1382
+ "name": "Branch",
1383
+ "outputs": {
1384
+ "false": {
1385
+ "name": "false",
1386
+ "position": "right",
1387
  "type": {
1388
+ "type": "None"
1389
  }
1390
  },
1391
+ "true": {
1392
+ "name": "true",
1393
+ "position": "right",
1394
  "type": {
1395
+ "type": "None"
1396
+ }
1397
+ }
1398
+ },
1399
+ "params": {
1400
+ "expression": {
1401
  "default": null,
1402
+ "name": "expression",
1403
  "type": {
1404
  "type": "<class 'str'>"
1405
+ }
 
1406
  }
1407
  },
1408
+ "position": {
1409
+ "x": 839.0,
1410
+ "y": 427.0
1411
+ },
1412
  "type": "basic"
1413
  },
1414
+ "params": {
1415
+ "expression": "yes"
1416
+ },
1417
+ "status": "done",
1418
+ "title": "Branch"
1419
  },
1420
+ "dragHandle": ".bg-primary",
1421
+ "height": 200.0,
1422
+ "id": "Branch 1",
1423
  "position": {
1424
+ "x": 1960.130375806953,
1425
+ "y": 35.04769879986424
1426
  },
1427
+ "type": "basic",
1428
+ "width": 200.0
1429
  },
1430
  {
 
 
1431
  "data": {
 
 
 
 
 
 
1432
  "display": null,
1433
+ "error": "[Errno 2] No such file or directory: ''",
1434
+ "input_metadata": null,
1435
  "meta": {
1436
+ "inputs": {},
1437
+ "name": "Input CSV",
1438
  "outputs": {
1439
  "output": {
 
1440
  "name": "output",
1441
+ "position": "right",
1442
  "type": {
1443
  "type": "None"
1444
  }
1445
  }
1446
  },
 
 
 
 
 
 
 
 
 
 
1447
  "params": {
1448
+ "filename": {
 
 
 
 
 
 
 
 
 
 
1449
  "default": null,
1450
+ "name": "filename",
1451
+ "type": {
1452
+ "format": "path"
1453
+ }
1454
  },
1455
+ "key": {
1456
  "default": null,
1457
+ "name": "key",
1458
  "type": {
1459
  "type": "<class 'str'>"
1460
+ }
 
1461
  }
1462
  },
 
1463
  "position": {
1464
+ "x": 357.0,
1465
+ "y": 548.0
1466
+ },
1467
+ "type": "basic"
1468
  },
1469
+ "params": {
1470
+ "filename": null,
1471
+ "key": null
1472
+ },
1473
+ "status": "done",
1474
+ "title": "Input CSV"
1475
  },
1476
+ "dragHandle": ".bg-primary",
1477
+ "height": 200.0,
1478
+ "id": "Input CSV 2",
1479
  "position": {
1480
+ "x": -555.0,
1481
+ "y": 75.0
1482
  },
1483
+ "type": "basic",
1484
+ "width": 200.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485
  }
1486
  ]
1487
  }
examples/Image processing.lynxkite.json CHANGED
@@ -1,284 +1,304 @@
1
  {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  "env": "Pillow",
3
  "nodes": [
4
  {
5
- "id": "Open image 1",
6
- "type": "basic",
7
  "data": {
8
- "title": "Open image",
9
- "params": {
10
- "filename": "https://media.licdn.com/dms/image/v2/C4E03AQEq4tdJKQiNHQ/profile-displayphoto-shrink_200_200/profile-displayphoto-shrink_200_200/0/1657270040827?e=2147483647&v=beta&t=lDxix0_0-_K7NUFqgPdzxY5-P7f73bWpPS_XRre842c"
11
- },
12
  "display": null,
13
  "error": null,
 
14
  "meta": {
 
 
15
  "outputs": {
16
  "output": {
17
  "name": "output",
 
18
  "type": {
19
  "type": "None"
20
- },
21
- "position": "right"
22
  }
23
  },
24
- "name": "Open image",
25
- "inputs": {},
26
  "params": {
27
  "filename": {
 
28
  "name": "filename",
29
  "type": {
30
  "type": "<class 'str'>"
31
- },
32
- "default": null
33
  }
34
  },
35
  "type": "basic"
36
  },
37
- "__execution_delay": 0.0,
38
- "collapsed": null
 
 
 
39
  },
 
 
 
 
40
  "position": {
41
  "x": -316.51795927908694,
42
  "y": 122.80901061526373
43
  },
44
- "width": 422.0,
45
- "parentId": null,
46
- "height": 222.0
47
  },
48
  {
49
- "id": "View image 1",
50
- "type": "image",
51
  "data": {
52
- "title": "View image",
53
- "params": {},
54
  "display": "",
55
  "error": null,
 
56
  "meta": {
57
- "type": "image",
58
- "outputs": {},
59
  "inputs": {
60
  "image": {
61
  "name": "image",
 
62
  "type": {
63
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
64
- },
65
- "position": "left"
66
  }
67
  },
68
  "name": "View image",
69
- "params": {}
70
- }
 
 
 
 
 
71
  },
 
 
 
 
72
  "position": {
73
  "x": 371.2152385614552,
74
  "y": -243.68185336918702
75
  },
76
- "parentId": null,
77
- "width": 265.0,
78
- "height": 288.0
79
  },
80
  {
81
- "id": "Flip verically 1",
82
- "type": "basic",
83
  "data": {
84
- "title": "Flip verically",
85
- "params": {},
86
  "display": null,
87
  "error": null,
 
88
  "meta": {
 
 
 
 
 
 
 
 
 
 
89
  "outputs": {
90
  "output": {
91
- "position": "right",
92
  "name": "output",
 
93
  "type": {
94
  "type": "None"
95
  }
96
  }
97
  },
98
- "type": "basic",
99
  "params": {},
100
- "name": "Flip verically",
101
- "inputs": {
102
- "image": {
103
- "name": "image",
104
- "position": "left",
105
- "type": {
106
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
107
- }
108
- }
109
- }
110
  },
111
- "collapsed": true,
112
- "__execution_delay": null
 
113
  },
 
 
 
 
114
  "position": {
115
  "x": 228.3853393986406,
116
  "y": 245.68255477059915
117
  },
118
- "width": 200.0,
119
- "parentId": null,
120
- "height": 200.0
121
  },
122
  {
123
- "id": "View image 2",
124
- "type": "image",
125
  "data": {
126
- "title": "View image",
127
- "params": {},
128
  "display": "",
129
  "error": null,
 
130
  "meta": {
131
- "outputs": {},
132
  "inputs": {
133
  "image": {
 
134
  "position": "left",
135
  "type": {
136
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
137
- },
138
- "name": "image"
139
  }
140
  },
141
  "name": "View image",
 
142
  "params": {},
143
  "type": "image"
144
- }
 
 
 
145
  },
 
 
 
 
146
  "position": {
147
- "x": 1027.1387925400982,
148
- "y": 251.36630333493974
149
  },
150
- "width": 222.0,
151
- "height": 291.0,
152
- "parentId": null
153
  },
154
  {
155
- "id": "To grayscale 1",
156
- "type": "basic",
157
  "data": {
158
- "title": "To grayscale",
159
- "params": {},
160
  "display": null,
161
  "error": null,
162
- "collapsed": true,
163
- "__execution_delay": null,
164
  "meta": {
165
- "type": "basic",
166
- "params": {},
167
- "outputs": {
168
- "output": {
169
- "type": {
170
- "type": "None"
171
- },
172
- "position": "right",
173
- "name": "output"
174
- }
175
- },
176
- "name": "To grayscale",
177
  "inputs": {
178
  "image": {
 
179
  "position": "left",
180
  "type": {
181
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
182
- },
183
- "name": "image"
 
 
 
 
 
 
 
 
 
184
  }
185
- }
186
- }
 
 
 
 
 
187
  },
 
 
 
 
188
  "position": {
189
- "x": 826.1911193192234,
190
- "y": 579.1542134884979
191
  },
192
- "parentId": null,
193
- "width": 200.0,
194
- "height": 200.0
195
  },
196
  {
197
- "id": "Blur 1",
198
- "type": "basic",
199
  "data": {
200
- "title": "Blur",
201
- "params": {
202
- "radius": "5"
203
- },
204
  "display": null,
205
  "error": null,
 
206
  "meta": {
207
- "type": "basic",
208
- "params": {
209
- "radius": {
210
- "default": 5.0,
211
- "name": "radius",
212
- "type": {
213
- "type": "<class 'float'>"
214
- }
215
- }
216
- },
217
  "inputs": {
218
  "image": {
219
  "name": "image",
 
220
  "type": {
221
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
222
- },
223
- "position": "left"
224
  }
225
  },
226
  "name": "Blur",
227
  "outputs": {
228
  "output": {
229
  "name": "output",
 
230
  "type": {
231
  "type": "None"
232
- },
233
- "position": "right"
234
  }
235
- }
236
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237
  },
 
 
 
 
238
  "position": {
239
  "x": 505.15961556359304,
240
  "y": 539.8477981917164
241
  },
242
- "parentId": null,
243
- "height": 200.0,
244
  "width": 200.0
245
  }
246
- ],
247
- "edges": [
248
- {
249
- "id": "xy-edge__Open image 1output-View image 1image",
250
- "source": "Open image 1",
251
- "target": "View image 1",
252
- "sourceHandle": "output",
253
- "targetHandle": "image"
254
- },
255
- {
256
- "id": "xy-edge__Open image 1output-Flip verically 1image",
257
- "source": "Open image 1",
258
- "target": "Flip verically 1",
259
- "sourceHandle": "output",
260
- "targetHandle": "image"
261
- },
262
- {
263
- "id": "xy-edge__To grayscale 1output-View image 2image",
264
- "source": "To grayscale 1",
265
- "target": "View image 2",
266
- "sourceHandle": "output",
267
- "targetHandle": "image"
268
- },
269
- {
270
- "id": "xy-edge__Flip verically 1output-Blur 1image",
271
- "source": "Flip verically 1",
272
- "target": "Blur 1",
273
- "sourceHandle": "output",
274
- "targetHandle": "image"
275
- },
276
- {
277
- "id": "xy-edge__Blur 1output-To grayscale 1image",
278
- "source": "Blur 1",
279
- "target": "To grayscale 1",
280
- "sourceHandle": "output",
281
- "targetHandle": "image"
282
- }
283
  ]
284
  }
 
1
  {
2
+ "edges": [
3
+ {
4
+ "id": "xy-edge__Open image 1output-View image 1image",
5
+ "source": "Open image 1",
6
+ "sourceHandle": "output",
7
+ "target": "View image 1",
8
+ "targetHandle": "image"
9
+ },
10
+ {
11
+ "id": "xy-edge__Open image 1output-Flip verically 1image",
12
+ "source": "Open image 1",
13
+ "sourceHandle": "output",
14
+ "target": "Flip verically 1",
15
+ "targetHandle": "image"
16
+ },
17
+ {
18
+ "id": "xy-edge__To grayscale 1output-View image 2image",
19
+ "source": "To grayscale 1",
20
+ "sourceHandle": "output",
21
+ "target": "View image 2",
22
+ "targetHandle": "image"
23
+ },
24
+ {
25
+ "id": "xy-edge__Flip verically 1output-Blur 1image",
26
+ "source": "Flip verically 1",
27
+ "sourceHandle": "output",
28
+ "target": "Blur 1",
29
+ "targetHandle": "image"
30
+ },
31
+ {
32
+ "id": "xy-edge__Blur 1output-To grayscale 1image",
33
+ "source": "Blur 1",
34
+ "sourceHandle": "output",
35
+ "target": "To grayscale 1",
36
+ "targetHandle": "image"
37
+ }
38
+ ],
39
  "env": "Pillow",
40
  "nodes": [
41
  {
 
 
42
  "data": {
43
+ "__execution_delay": 0.0,
44
+ "collapsed": null,
 
 
45
  "display": null,
46
  "error": null,
47
+ "input_metadata": null,
48
  "meta": {
49
+ "inputs": {},
50
+ "name": "Open image",
51
  "outputs": {
52
  "output": {
53
  "name": "output",
54
+ "position": "right",
55
  "type": {
56
  "type": "None"
57
+ }
 
58
  }
59
  },
 
 
60
  "params": {
61
  "filename": {
62
+ "default": null,
63
  "name": "filename",
64
  "type": {
65
  "type": "<class 'str'>"
66
+ }
 
67
  }
68
  },
69
  "type": "basic"
70
  },
71
+ "params": {
72
+ "filename": "https://media.licdn.com/dms/image/v2/C4E03AQEq4tdJKQiNHQ/profile-displayphoto-shrink_200_200/profile-displayphoto-shrink_200_200/0/1657270040827?e=2147483647&v=beta&t=lDxix0_0-_K7NUFqgPdzxY5-P7f73bWpPS_XRre842c"
73
+ },
74
+ "status": "done",
75
+ "title": "Open image"
76
  },
77
+ "dragHandle": ".bg-primary",
78
+ "height": 222.0,
79
+ "id": "Open image 1",
80
+ "parentId": null,
81
  "position": {
82
  "x": -316.51795927908694,
83
  "y": 122.80901061526373
84
  },
85
+ "type": "basic",
86
+ "width": 422.0
 
87
  },
88
  {
 
 
89
  "data": {
 
 
90
  "display": "",
91
  "error": null,
92
+ "input_metadata": null,
93
  "meta": {
 
 
94
  "inputs": {
95
  "image": {
96
  "name": "image",
97
+ "position": "left",
98
  "type": {
99
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
100
+ }
 
101
  }
102
  },
103
  "name": "View image",
104
+ "outputs": {},
105
+ "params": {},
106
+ "type": "image"
107
+ },
108
+ "params": {},
109
+ "status": "done",
110
+ "title": "View image"
111
  },
112
+ "dragHandle": ".bg-primary",
113
+ "height": 288.0,
114
+ "id": "View image 1",
115
+ "parentId": null,
116
  "position": {
117
  "x": 371.2152385614552,
118
  "y": -243.68185336918702
119
  },
120
+ "type": "image",
121
+ "width": 265.0
 
122
  },
123
  {
 
 
124
  "data": {
125
+ "__execution_delay": null,
126
+ "collapsed": true,
127
  "display": null,
128
  "error": null,
129
+ "input_metadata": null,
130
  "meta": {
131
+ "inputs": {
132
+ "image": {
133
+ "name": "image",
134
+ "position": "left",
135
+ "type": {
136
+ "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
137
+ }
138
+ }
139
+ },
140
+ "name": "Flip verically",
141
  "outputs": {
142
  "output": {
 
143
  "name": "output",
144
+ "position": "right",
145
  "type": {
146
  "type": "None"
147
  }
148
  }
149
  },
 
150
  "params": {},
151
+ "type": "basic"
 
 
 
 
 
 
 
 
 
152
  },
153
+ "params": {},
154
+ "status": "done",
155
+ "title": "Flip verically"
156
  },
157
+ "dragHandle": ".bg-primary",
158
+ "height": 200.0,
159
+ "id": "Flip verically 1",
160
+ "parentId": null,
161
  "position": {
162
  "x": 228.3853393986406,
163
  "y": 245.68255477059915
164
  },
165
+ "type": "basic",
166
+ "width": 200.0
 
167
  },
168
  {
 
 
169
  "data": {
 
 
170
  "display": "",
171
  "error": null,
172
+ "input_metadata": null,
173
  "meta": {
 
174
  "inputs": {
175
  "image": {
176
+ "name": "image",
177
  "position": "left",
178
  "type": {
179
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
180
+ }
 
181
  }
182
  },
183
  "name": "View image",
184
+ "outputs": {},
185
  "params": {},
186
  "type": "image"
187
+ },
188
+ "params": {},
189
+ "status": "done",
190
+ "title": "View image"
191
  },
192
+ "dragHandle": ".bg-primary",
193
+ "height": 456.0,
194
+ "id": "View image 2",
195
+ "parentId": null,
196
  "position": {
197
+ "x": 1068.1904563045216,
198
+ "y": 313.7040149772122
199
  },
200
+ "type": "image",
201
+ "width": 398.0
 
202
  },
203
  {
 
 
204
  "data": {
205
+ "__execution_delay": null,
206
+ "collapsed": true,
207
  "display": null,
208
  "error": null,
209
+ "input_metadata": null,
 
210
  "meta": {
 
 
 
 
 
 
 
 
 
 
 
 
211
  "inputs": {
212
  "image": {
213
+ "name": "image",
214
  "position": "left",
215
  "type": {
216
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
217
+ }
218
+ }
219
+ },
220
+ "name": "To grayscale",
221
+ "outputs": {
222
+ "output": {
223
+ "name": "output",
224
+ "position": "right",
225
+ "type": {
226
+ "type": "None"
227
+ }
228
  }
229
+ },
230
+ "params": {},
231
+ "type": "basic"
232
+ },
233
+ "params": {},
234
+ "status": "done",
235
+ "title": "To grayscale"
236
  },
237
+ "dragHandle": ".bg-primary",
238
+ "height": 200.0,
239
+ "id": "To grayscale 1",
240
+ "parentId": null,
241
  "position": {
242
+ "x": 788.18031953735,
243
+ "y": 541.1434137066244
244
  },
245
+ "type": "basic",
246
+ "width": 200.0
 
247
  },
248
  {
 
 
249
  "data": {
250
+ "__execution_delay": 0.0,
251
+ "collapsed": null,
 
 
252
  "display": null,
253
  "error": null,
254
+ "input_metadata": null,
255
  "meta": {
 
 
 
 
 
 
 
 
 
 
256
  "inputs": {
257
  "image": {
258
  "name": "image",
259
+ "position": "left",
260
  "type": {
261
  "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
262
+ }
 
263
  }
264
  },
265
  "name": "Blur",
266
  "outputs": {
267
  "output": {
268
  "name": "output",
269
+ "position": "right",
270
  "type": {
271
  "type": "None"
272
+ }
 
273
  }
274
+ },
275
+ "params": {
276
+ "radius": {
277
+ "default": 5.0,
278
+ "name": "radius",
279
+ "type": {
280
+ "type": "<class 'float'>"
281
+ }
282
+ }
283
+ },
284
+ "type": "basic"
285
+ },
286
+ "params": {
287
+ "radius": "5"
288
+ },
289
+ "status": "done",
290
+ "title": "Blur"
291
  },
292
+ "dragHandle": ".bg-primary",
293
+ "height": 200.0,
294
+ "id": "Blur 1",
295
+ "parentId": null,
296
  "position": {
297
  "x": 505.15961556359304,
298
  "y": 539.8477981917164
299
  },
300
+ "type": "basic",
 
301
  "width": 200.0
302
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
  ]
304
  }
examples/Model use.lynxkite.json CHANGED
@@ -185,8 +185,8 @@
185
  "height": 282.0,
186
  "id": "Train/test split 1",
187
  "position": {
188
- "x": 345.0,
189
- "y": 139.0
190
  },
191
  "type": "basic",
192
  "width": 259.0
@@ -266,8 +266,8 @@
266
  "height": 403.0,
267
  "id": "Import Parquet 1",
268
  "position": {
269
- "x": -166.0,
270
- "y": 112.0
271
  },
272
  "type": "basic",
273
  "width": 371.0
@@ -421,7 +421,7 @@
421
  "type": "basic"
422
  },
423
  "params": {
424
- "model_workspace": "Model definition",
425
  "save_as": "model"
426
  },
427
  "status": "done",
@@ -431,8 +431,8 @@
431
  "height": 537.0,
432
  "id": "Define model 1",
433
  "position": {
434
- "x": 795.0,
435
- "y": -45.0
436
  },
437
  "type": "basic",
438
  "width": 498.0
@@ -635,7 +635,7 @@
635
  "type": "basic"
636
  },
637
  "params": {
638
- "epochs": "151",
639
  "input_mapping": "{\"map\":{\"Input__tensor_1_output\":{\"df\":\"df_train\",\"column\":\"x\"},\"Input__tensor_3_output\":{\"df\":\"df_train\",\"column\":\"y\"}}}",
640
  "model_name": "model"
641
  },
@@ -646,8 +646,8 @@
646
  "height": 604.0,
647
  "id": "Train model 2",
648
  "position": {
649
- "x": 1399.5245787239226,
650
- "y": -19.196202428593544
651
  },
652
  "type": "basic",
653
  "width": 586.0
@@ -1475,157 +1475,206 @@
1475
  "series": [
1476
  {
1477
  "data": [
1478
- 6.014081001281738,
1479
- 5.580916404724121,
1480
- 5.274184226989746,
1481
- 5.0237603187561035,
1482
- 4.804426670074463,
1483
- 4.605026721954346,
1484
- 4.419903755187988,
1485
- 4.246149063110352,
1486
- 4.082696914672852,
1487
- 3.9301321506500244,
1488
- 3.7902746200561523,
1489
- 3.6642696857452393,
1490
- 3.5418264865875244,
1491
- 3.3390703201293945,
1492
- 2.8697218894958496,
1493
- 2.3933401107788086,
1494
- 2.047636032104492,
1495
- 1.83914053440094,
1496
- 1.7334750890731812,
1497
- 1.6865350008010864,
1498
- 1.666785478591919,
1499
- 1.658176302909851,
1500
- 1.6540385484695435,
1501
- 1.651779055595398,
1502
- 1.650368094444275,
1503
- 1.6493637561798096,
1504
- 1.6485661268234253,
1505
- 1.6478790044784546,
1506
- 1.6472536325454712,
1507
- 1.6466654539108276,
1508
- 1.6461007595062256,
1509
- 1.6455528736114502,
1510
- 1.6450183391571045,
1511
- 1.6444944143295288,
1512
- 1.643980622291565,
1513
- 1.6434764862060547,
1514
- 1.6429831981658936,
1515
- 1.6424978971481323,
1516
- 1.64202082157135,
1517
- 1.6415510177612305,
1518
- 1.6410887241363525,
1519
- 1.6406346559524536,
1520
- 1.6401888132095337,
1521
- 1.639750361442566,
1522
- 1.6393187046051025,
1523
- 1.6388964653015137,
1524
- 1.6384804248809814,
1525
- 1.638070821762085,
1526
- 1.6376668214797974,
1527
- 1.6372689008712769,
1528
- 1.6368769407272339,
1529
- 1.6364902257919312,
1530
- 1.636109471321106,
1531
- 1.6357333660125732,
1532
- 1.6353627443313599,
1533
- 1.6349972486495972,
1534
- 1.6346369981765747,
1535
- 1.6342813968658447,
1536
- 1.6339303255081177,
1537
- 1.6335841417312622,
1538
- 1.6332424879074097,
1539
- 1.6329057216644287,
1540
- 1.6325738430023193,
1541
- 1.6322462558746338,
1542
- 1.6319226026535034,
1543
- 1.6316030025482178,
1544
- 1.6312874555587769,
1545
- 1.6309759616851807,
1546
- 1.6306681632995605,
1547
- 1.630364179611206,
1548
- 1.6300634145736694,
1549
- 1.629766821861267,
1550
- 1.629473328590393,
1551
- 1.6291834115982056,
1552
- 1.628896713256836,
1553
- 1.6286135911941528,
1554
- 1.628333568572998,
1555
- 1.628056526184082,
1556
- 1.6277827024459839,
1557
- 1.6275124549865723,
1558
- 1.6272450685501099,
1559
- 1.6269807815551758,
1560
- 1.6267189979553223,
1561
- 1.626460075378418,
1562
- 1.6262041330337524,
1563
- 1.625950813293457,
1564
- 1.6256998777389526,
1565
- 1.625451683998108,
1566
- 1.6252059936523438,
1567
- 1.6249629259109497,
1568
- 1.6247217655181885,
1569
- 1.6244832277297974,
1570
- 1.6242470741271973,
1571
- 1.6240129470825195,
1572
- 1.6237813234329224,
1573
- 1.6235517263412476,
1574
- 1.6233243942260742,
1575
- 1.6230992078781128,
1576
- 1.6228758096694946,
1577
- 1.622654676437378,
1578
- 1.6224353313446045,
1579
- 1.6220967769622803,
1580
- 1.6087429523468018,
1581
- 1.1195111274719238,
1582
- 0.6312010288238525,
1583
- 0.35807740688323975,
1584
- 0.21476756036281586,
1585
- 0.14402888715267181,
1586
- 0.11020153015851974,
1587
- 0.09413749724626541,
1588
- 0.08644001930952072,
1589
- 0.08266805112361908,
1590
- 0.08074231445789337,
1591
- 0.07968885451555252,
1592
- 0.07904941588640213,
1593
- 0.0786079540848732,
1594
- 0.0782623365521431,
1595
- 0.07796423882246017,
1596
- 0.07769070565700531,
1597
- 0.0774308443069458,
1598
- 0.0771794393658638,
1599
- 0.07693397998809814,
1600
- 0.07669319212436676,
1601
- 0.07645650207996368,
1602
- 0.07622353732585907,
1603
- 0.07599412649869919,
1604
- 0.0757681354880333,
1605
- 0.07554544508457184,
1606
- 0.07532599568367004,
1607
- 0.07510971277952194,
1608
- 0.07489652186632156,
1609
- 0.07468635588884354,
1610
- 0.07447917759418488,
1611
- 0.07427489757537842,
1612
- 0.07407346367835999,
1613
- 0.073874831199646,
1614
- 0.07367893308401108,
1615
- 0.07348571717739105,
1616
- 0.07329512387514114,
1617
- 0.07310713827610016,
1618
- 0.07292166352272034,
1619
- 0.07273866981267929,
1620
- 0.07255809754133224,
1621
- 0.072379931807518,
1622
- 0.07220420241355896,
1623
- 0.07203087955713272,
1624
- 0.07185979187488556,
1625
- 0.07169090956449509,
1626
- 0.07152417302131653,
1627
- 0.0713595449924469,
1628
- 0.07119700312614441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
  ],
1630
  "type": "line"
1631
  }
@@ -2143,64 +2192,64 @@
2143
  ],
2144
  "data": [
2145
  [
2146
- 4,
2147
- "[0.76807946 0.98855817 0.08259124 0.01730657]",
2148
- "[1.76807952 1.98855817 1.0825913 1.01730657]",
2149
- "[2.398310661315918, 2.482480764389038, 2.3205058574676514, 2.4670262336730957]"
2150
  ],
2151
  [
2152
- 99,
2153
- "[0.68891573 0.25576538 0.96339929 0.503833 ]",
2154
- "[1.68891573 1.25576544 1.96339929 1.50383306]",
2155
- "[2.6001150608062744, 2.58300518989563, 2.5226938724517822, 2.607975959777832]"
2156
  ],
2157
  [
2158
- 26,
2159
- "[0.31518555 0.49643308 0.11509258 0.95458382]",
2160
- "[1.31518555 1.49643302 1.11509252 1.95458388]",
2161
- "[2.460686445236206, 2.5214929580688477, 2.4216299057006836, 2.554131507873535]"
2162
  ],
2163
  [
2164
- 40,
2165
- "[0.44330525 0.09997386 0.89025736 0.90507984]",
2166
- "[1.44330525 1.09997392 1.89025736 1.90507984]",
2167
- "[2.5939838886260986, 2.5837721824645996, 2.534832715988159, 2.6243085861206055]"
2168
  ],
2169
  [
2170
- 44,
2171
- "[0.52784437 0.54268694 0.12358981 0.72116476]",
2172
- "[1.52784443 1.54268694 1.12358975 1.7211647 ]",
2173
- "[2.467513084411621, 2.5237104892730713, 2.4233744144439697, 2.5531327724456787]"
2174
  ],
2175
  [
2176
- 8,
2177
- "[4.27091718e-01 4.89909172e-01 6.92297399e-01 2.57611275e-04]",
2178
- "[1.42709172 1.48990917 1.69229746 1.00025761]",
2179
- "[2.1933858394622803, 2.382107734680176, 2.1187074184417725, 2.328011989593506]"
2180
  ],
2181
  [
2182
- 42,
2183
- "[0.75292218 0.81470108 0.49657214 0.56217098]",
2184
- "[1.75292218 1.81470108 1.49657214 1.56217098]",
2185
- "[2.7627859115600586, 2.660106658935547, 2.6692981719970703, 2.703057289123535]"
2186
  ],
2187
  [
2188
- 62,
2189
- "[0.81788456 0.58174163 0.29376316 0.7971254 ]",
2190
- "[1.81788456 1.58174157 1.29376316 1.79712534]",
2191
- "[2.7435245513916016, 2.656848907470703, 2.682042360305786, 2.725670099258423]"
2192
  ],
2193
  [
2194
- 15,
2195
- "[0.04508126 0.76880038 0.80721325 0.62542385]",
2196
- "[1.04508126 1.76880038 1.80721331 1.62542391]",
2197
- "[2.5160605907440186, 2.536039352416992, 2.410257339477539, 2.5175909996032715]"
2198
  ],
2199
  [
2200
- 66,
2201
- "[0.02162331 0.81861657 0.92468154 0.07808572]",
2202
- "[1.02162337 1.81861663 1.92468154 1.07808566]",
2203
- "[2.2642712593078613, 2.4094104766845703, 2.148714065551758, 2.3313822746276855]"
2204
  ]
2205
  ]
2206
  },
@@ -2669,310 +2718,310 @@
2669
  ],
2670
  "data": [
2671
  [
2672
- 6.014081001281738
2673
  ],
2674
  [
2675
- 5.580916404724121
2676
  ],
2677
  [
2678
- 5.274184226989746
2679
  ],
2680
  [
2681
- 5.0237603187561035
2682
  ],
2683
  [
2684
- 4.804426670074463
2685
  ],
2686
  [
2687
- 4.605026721954346
2688
  ],
2689
  [
2690
- 4.419903755187988
2691
  ],
2692
  [
2693
- 4.246149063110352
2694
  ],
2695
  [
2696
- 4.082696914672852
2697
  ],
2698
  [
2699
- 3.9301321506500244
2700
  ],
2701
  [
2702
- 3.7902746200561523
2703
  ],
2704
  [
2705
- 3.6642696857452393
2706
  ],
2707
  [
2708
- 3.5418264865875244
2709
  ],
2710
  [
2711
- 3.3390703201293945
2712
  ],
2713
  [
2714
- 2.8697218894958496
2715
  ],
2716
  [
2717
- 2.3933401107788086
2718
  ],
2719
  [
2720
- 2.047636032104492
2721
  ],
2722
  [
2723
- 1.83914053440094
2724
  ],
2725
  [
2726
- 1.7334750890731812
2727
  ],
2728
  [
2729
- 1.6865350008010864
2730
  ],
2731
  [
2732
- 1.666785478591919
2733
  ],
2734
  [
2735
- 1.658176302909851
2736
  ],
2737
  [
2738
- 1.6540385484695435
2739
  ],
2740
  [
2741
- 1.651779055595398
2742
  ],
2743
  [
2744
- 1.650368094444275
2745
  ],
2746
  [
2747
- 1.6493637561798096
2748
  ],
2749
  [
2750
- 1.6485661268234253
2751
  ],
2752
  [
2753
- 1.6478790044784546
2754
  ],
2755
  [
2756
- 1.6472536325454712
2757
  ],
2758
  [
2759
- 1.6466654539108276
2760
  ],
2761
  [
2762
- 1.6461007595062256
2763
  ],
2764
  [
2765
- 1.6455528736114502
2766
  ],
2767
  [
2768
- 1.6450183391571045
2769
  ],
2770
  [
2771
- 1.6444944143295288
2772
  ],
2773
  [
2774
- 1.643980622291565
2775
  ],
2776
  [
2777
- 1.6434764862060547
2778
  ],
2779
  [
2780
- 1.6429831981658936
2781
  ],
2782
  [
2783
- 1.6424978971481323
2784
  ],
2785
  [
2786
- 1.64202082157135
2787
  ],
2788
  [
2789
- 1.6415510177612305
2790
  ],
2791
  [
2792
- 1.6410887241363525
2793
  ],
2794
  [
2795
- 1.6406346559524536
2796
  ],
2797
  [
2798
- 1.6401888132095337
2799
  ],
2800
  [
2801
- 1.639750361442566
2802
  ],
2803
  [
2804
- 1.6393187046051025
2805
  ],
2806
  [
2807
- 1.6388964653015137
2808
  ],
2809
  [
2810
- 1.6384804248809814
2811
  ],
2812
  [
2813
- 1.638070821762085
2814
  ],
2815
  [
2816
- 1.6376668214797974
2817
  ],
2818
  [
2819
- 1.6372689008712769
2820
  ],
2821
  [
2822
- 1.6368769407272339
2823
  ],
2824
  [
2825
- 1.6364902257919312
2826
  ],
2827
  [
2828
- 1.636109471321106
2829
  ],
2830
  [
2831
- 1.6357333660125732
2832
  ],
2833
  [
2834
- 1.6353627443313599
2835
  ],
2836
  [
2837
- 1.6349972486495972
2838
  ],
2839
  [
2840
- 1.6346369981765747
2841
  ],
2842
  [
2843
- 1.6342813968658447
2844
  ],
2845
  [
2846
- 1.6339303255081177
2847
  ],
2848
  [
2849
- 1.6335841417312622
2850
  ],
2851
  [
2852
- 1.6332424879074097
2853
  ],
2854
  [
2855
- 1.6329057216644287
2856
  ],
2857
  [
2858
- 1.6325738430023193
2859
  ],
2860
  [
2861
- 1.6322462558746338
2862
  ],
2863
  [
2864
- 1.6319226026535034
2865
  ],
2866
  [
2867
- 1.6316030025482178
2868
  ],
2869
  [
2870
- 1.6312874555587769
2871
  ],
2872
  [
2873
- 1.6309759616851807
2874
  ],
2875
  [
2876
- 1.6306681632995605
2877
  ],
2878
  [
2879
- 1.630364179611206
2880
  ],
2881
  [
2882
- 1.6300634145736694
2883
  ],
2884
  [
2885
- 1.629766821861267
2886
  ],
2887
  [
2888
- 1.629473328590393
2889
  ],
2890
  [
2891
- 1.6291834115982056
2892
  ],
2893
  [
2894
- 1.628896713256836
2895
  ],
2896
  [
2897
- 1.6286135911941528
2898
  ],
2899
  [
2900
- 1.628333568572998
2901
  ],
2902
  [
2903
- 1.628056526184082
2904
  ],
2905
  [
2906
- 1.6277827024459839
2907
  ],
2908
  [
2909
- 1.6275124549865723
2910
  ],
2911
  [
2912
- 1.6272450685501099
2913
  ],
2914
  [
2915
- 1.6269807815551758
2916
  ],
2917
  [
2918
- 1.6267189979553223
2919
  ],
2920
  [
2921
- 1.626460075378418
2922
  ],
2923
  [
2924
- 1.6262041330337524
2925
  ],
2926
  [
2927
- 1.625950813293457
2928
  ],
2929
  [
2930
- 1.6256998777389526
2931
  ],
2932
  [
2933
- 1.625451683998108
2934
  ],
2935
  [
2936
- 1.6252059936523438
2937
  ],
2938
  [
2939
- 1.6249629259109497
2940
  ],
2941
  [
2942
- 1.6247217655181885
2943
  ],
2944
  [
2945
- 1.6244832277297974
2946
  ],
2947
  [
2948
- 1.6242470741271973
2949
  ],
2950
  [
2951
- 1.6240129470825195
2952
  ],
2953
  [
2954
- 1.6237813234329224
2955
  ],
2956
  [
2957
- 1.6235517263412476
2958
  ],
2959
  [
2960
- 1.6233243942260742
2961
  ],
2962
  [
2963
- 1.6230992078781128
2964
  ],
2965
  [
2966
- 1.6228758096694946
2967
  ],
2968
  [
2969
- 1.622654676437378
2970
  ]
2971
  ]
2972
  }
2973
  },
2974
  "other": {
2975
- "model": "ModelConfig(model=Sequential(\n (0) - Identity(): Input__tensor_1_output -> START_Repeat_1_output\n (1) - Linear(4, 4, bias=True): START_Repeat_1_output -> Linear_1_output\n (2) - <function leaky_relu at 0x7620a30c54e0>: Linear_1_output -> Activation_1_output\n (3) - Identity(): Activation_1_output -> START_Repeat_1_output\n (4) - Linear(4, 4, bias=True): START_Repeat_1_output -> Linear_1_output\n (5) - <function leaky_relu at 0x7620a30c54e0>: Linear_1_output -> Activation_1_output\n (6) - Identity(): Activation_1_output -> END_Repeat_1_output\n (7) - Identity(): END_Repeat_1_output -> Output_1_x\n (8) - Identity(): Output_1_x -> Output_1_x\n), model_inputs=['Input__tensor_1_output'], model_outputs=['Output_1_x'], loss_inputs=['Input__tensor_3_output', 'Output_1_x'], loss=Sequential(\n (0) - <function constant_vector.<locals>.<lambda> at 0x761ebc727740>: nothing -> Constant_vector_1_output\n (1) - <built-in method add of type object at 0x76209f79ef00>: Input__tensor_3_output, Constant_vector_1_output -> Add_1_output\n (2) - <function mse_loss at 0x7620a30c6fc0>: Output_1_x, Add_1_output -> MSE_loss_2_output\n (3) - Identity(): MSE_loss_2_output -> loss\n), optimizer_parameters={'lr': 0.1, 'type': <OptionsFor_type.SGD: 4>}, optimizer=SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n lr: 0.1\n maximize: False\n momentum: 0\n nesterov: False\n weight_decay: 0\n), source_workspace='Model definition', trained=True)"
2976
  },
2977
  "relations": []
2978
  },
@@ -3079,67 +3128,67 @@
3079
  {
3080
  "data": [
3081
  [
3082
- -1287.0316162109375,
3083
- -197.19064331054688,
3084
  "",
3085
- -10.191871643066406
3086
  ],
3087
  [
3088
- 1850.403076171875,
3089
- -1934.8701171875,
3090
  "",
3091
- -10.843463897705078
3092
  ],
3093
  [
3094
- -2139.6982421875,
3095
- 2140.9306640625,
3096
  "",
3097
- -9.693496704101562
3098
  ],
3099
  [
3100
- -829.4639892578125,
3101
- 1453.0125732421875,
3102
  "",
3103
- -12.964160919189453
3104
  ],
3105
  [
3106
- -2034.95068359375,
3107
- -2228.56005859375,
3108
  "",
3109
- -8.494583129882812
3110
  ],
3111
  [
3112
- 775.7841796875,
3113
- -987.1351318359375,
3114
  "",
3115
- -7.914520263671875
3116
  ],
3117
  [
3118
- -834.7413330078125,
3119
- -1010.576904296875,
3120
  "",
3121
- -11.352218627929688
3122
  ],
3123
  [
3124
- 1341.696044921875,
3125
- 327.52203369140625,
3126
  "",
3127
- -12.275350570678711
3128
  ],
3129
  [
3130
- 2031.8687744140625,
3131
- 1949.9718017578125,
3132
  "",
3133
- -11.710403442382812
3134
  ],
3135
  [
3136
- 506.062255859375,
3137
- 1029.9742431640625,
3138
  "",
3139
- -8.997444152832031
3140
  ]
3141
  ],
3142
- "symbolSize": 15.811388300841896,
3143
  "type": "scatter"
3144
  }
3145
  ],
@@ -3166,8 +3215,8 @@
3166
  "#FDE725"
3167
  ]
3168
  },
3169
- "max": -7.914520263671875,
3170
- "min": -12.964160919189453,
3171
  "right": 10,
3172
  "top": "center"
3173
  },
@@ -3254,6 +3303,43 @@
3254
  "type": "<class 'str'>"
3255
  }
3256
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3257
  "table_name": {
3258
  "default": "nodes",
3259
  "name": "table_name",
@@ -3269,10 +3355,6 @@
3269
  }
3270
  }
3271
  },
3272
- "position": {
3273
- "x": 943.0,
3274
- "y": 315.0
3275
- },
3276
  "type": "visualization"
3277
  },
3278
  "params": {
 
185
  "height": 282.0,
186
  "id": "Train/test split 1",
187
  "position": {
188
+ "x": 349.77298999520514,
189
+ "y": 258.3247498801284
190
  },
191
  "type": "basic",
192
  "width": 259.0
 
266
  "height": 403.0,
267
  "id": "Import Parquet 1",
268
  "position": {
269
+ "x": -168.95660213591873,
270
+ "y": 144.52262349510613
271
  },
272
  "type": "basic",
273
  "width": 371.0
 
421
  "type": "basic"
422
  },
423
  "params": {
424
+ "model_workspace": "Model definition.lynxkite.json",
425
  "save_as": "model"
426
  },
427
  "status": "done",
 
431
  "height": 537.0,
432
  "id": "Define model 1",
433
  "position": {
434
+ "x": 769.5394853864134,
435
+ "y": 236.40899954470228
436
  },
437
  "type": "basic",
438
  "width": 498.0
 
635
  "type": "basic"
636
  },
637
  "params": {
638
+ "epochs": "200",
639
  "input_mapping": "{\"map\":{\"Input__tensor_1_output\":{\"df\":\"df_train\",\"column\":\"x\"},\"Input__tensor_3_output\":{\"df\":\"df_train\",\"column\":\"y\"}}}",
640
  "model_name": "model"
641
  },
 
646
  "height": 604.0,
647
  "id": "Train model 2",
648
  "position": {
649
+ "x": 1377.350062704532,
650
+ "y": 9.630668396614158
651
  },
652
  "type": "basic",
653
  "width": 586.0
 
1475
  "series": [
1476
  {
1477
  "data": [
1478
+ 6.55940055847168,
1479
+ 6.532864570617676,
1480
+ 6.317222595214844,
1481
+ 5.958171367645264,
1482
+ 5.608485221862793,
1483
+ 5.27166223526001,
1484
+ 4.9437642097473145,
1485
+ 4.621719837188721,
1486
+ 4.302500247955322,
1487
+ 3.924199342727661,
1488
+ 3.3956313133239746,
1489
+ 2.768808603286743,
1490
+ 2.3079161643981934,
1491
+ 2.0202383995056152,
1492
+ 1.8661450147628784,
1493
+ 1.791445255279541,
1494
+ 1.7561746835708618,
1495
+ 1.7389912605285645,
1496
+ 1.7301608324050903,
1497
+ 1.7253751754760742,
1498
+ 1.7226382493972778,
1499
+ 1.720971703529358,
1500
+ 1.7198742628097534,
1501
+ 1.7190840244293213,
1502
+ 1.7184607982635498,
1503
+ 1.7179292440414429,
1504
+ 1.7174499034881592,
1505
+ 1.7170003652572632,
1506
+ 1.7165690660476685,
1507
+ 1.716149926185608,
1508
+ 1.7157388925552368,
1509
+ 1.7153353691101074,
1510
+ 1.7149369716644287,
1511
+ 1.7145392894744873,
1512
+ 1.7141461372375488,
1513
+ 1.713756799697876,
1514
+ 1.7133721113204956,
1515
+ 1.7129909992218018,
1516
+ 1.71261465549469,
1517
+ 1.712242841720581,
1518
+ 1.7118747234344482,
1519
+ 1.711510181427002,
1520
+ 1.7111490964889526,
1521
+ 1.7107914686203003,
1522
+ 1.710437297821045,
1523
+ 1.7100863456726074,
1524
+ 1.709738850593567,
1525
+ 1.7093948125839233,
1526
+ 1.70905339717865,
1527
+ 1.7087154388427734,
1528
+ 1.7083803415298462,
1529
+ 1.7080481052398682,
1530
+ 1.7077194452285767,
1531
+ 1.7073934078216553,
1532
+ 1.7070705890655518,
1533
+ 1.706750512123108,
1534
+ 1.7064330577850342,
1535
+ 1.7061185836791992,
1536
+ 1.7058073282241821,
1537
+ 1.705498456954956,
1538
+ 1.7051914930343628,
1539
+ 1.7048841714859009,
1540
+ 1.7045789957046509,
1541
+ 1.7042763233184814,
1542
+ 1.7039755582809448,
1543
+ 1.7036770582199097,
1544
+ 1.703381061553955,
1545
+ 1.7030868530273438,
1546
+ 1.7027950286865234,
1547
+ 1.702505111694336,
1548
+ 1.7022191286087036,
1549
+ 1.7019346952438354,
1550
+ 1.7016525268554688,
1551
+ 1.7013723850250244,
1552
+ 1.7010945081710815,
1553
+ 1.700818419456482,
1554
+ 1.7005443572998047,
1555
+ 1.7002726793289185,
1556
+ 1.7000021934509277,
1557
+ 1.6997339725494385,
1558
+ 1.6994673013687134,
1559
+ 1.6992027759552002,
1560
+ 1.698939561843872,
1561
+ 1.6986777782440186,
1562
+ 1.6984175443649292,
1563
+ 1.6981593370437622,
1564
+ 1.6979025602340698,
1565
+ 1.6976478099822998,
1566
+ 1.6973942518234253,
1567
+ 1.6971427202224731,
1568
+ 1.696892499923706,
1569
+ 1.696643352508545,
1570
+ 1.6963953971862793,
1571
+ 1.6961476802825928,
1572
+ 1.6959006786346436,
1573
+ 1.6956558227539062,
1574
+ 1.6954121589660645,
1575
+ 1.6951699256896973,
1576
+ 1.6949294805526733,
1577
+ 1.694690227508545,
1578
+ 1.6944524049758911,
1579
+ 1.694216012954712,
1580
+ 1.6939810514450073,
1581
+ 1.6937474012374878,
1582
+ 1.6935150623321533,
1583
+ 1.6932820081710815,
1584
+ 1.6930508613586426,
1585
+ 1.6928209066390991,
1586
+ 1.6925923824310303,
1587
+ 1.692365050315857,
1588
+ 1.6921390295028687,
1589
+ 1.6919145584106445,
1590
+ 1.6916910409927368,
1591
+ 1.691468596458435,
1592
+ 1.6912479400634766,
1593
+ 1.691028356552124,
1594
+ 1.6908091306686401,
1595
+ 1.690589189529419,
1596
+ 1.690369963645935,
1597
+ 1.6901525259017944,
1598
+ 1.6899358034133911,
1599
+ 1.6897205114364624,
1600
+ 1.68950617313385,
1601
+ 1.6892932653427124,
1602
+ 1.6890813112258911,
1603
+ 1.6888707876205444,
1604
+ 1.688660979270935,
1605
+ 1.688452959060669,
1606
+ 1.6882463693618774,
1607
+ 1.688040852546692,
1608
+ 1.6878364086151123,
1609
+ 1.6876330375671387,
1610
+ 1.687430500984192,
1611
+ 1.687229037284851,
1612
+ 1.6870285272598267,
1613
+ 1.68682861328125,
1614
+ 1.686630129814148,
1615
+ 1.6864326000213623,
1616
+ 1.6862367391586304,
1617
+ 1.6860424280166626,
1618
+ 1.6858487129211426,
1619
+ 1.6856558322906494,
1620
+ 1.6854640245437622,
1621
+ 1.6852730512619019,
1622
+ 1.6850833892822266,
1623
+ 1.6848939657211304,
1624
+ 1.6847059726715088,
1625
+ 1.6845184564590454,
1626
+ 1.6843317747116089,
1627
+ 1.6841459274291992,
1628
+ 1.683961033821106,
1629
+ 1.683774709701538,
1630
+ 1.6825401782989502,
1631
+ 1.6670376062393188,
1632
+ 1.3897160291671753,
1633
+ 0.7587477564811707,
1634
+ 0.4103911221027374,
1635
+ 0.22640474140644073,
1636
+ 0.13622593879699707,
1637
+ 0.09389767050743103,
1638
+ 0.07427093386650085,
1639
+ 0.06510725617408752,
1640
+ 0.060707394033670425,
1641
+ 0.05847858265042305,
1642
+ 0.05724810063838959,
1643
+ 0.05648081749677658,
1644
+ 0.055930159986019135,
1645
+ 0.05548093467950821,
1646
+ 0.05508357286453247,
1647
+ 0.054715368896722794,
1648
+ 0.05436414107680321,
1649
+ 0.05402439832687378,
1650
+ 0.05369157716631889,
1651
+ 0.05336494371294975,
1652
+ 0.053042035549879074,
1653
+ 0.05272458866238594,
1654
+ 0.0524122379720211,
1655
+ 0.05210496485233307,
1656
+ 0.05180070549249649,
1657
+ 0.05149861425161362,
1658
+ 0.051203493028879166,
1659
+ 0.050912823528051376,
1660
+ 0.0506264828145504,
1661
+ 0.050344377756118774,
1662
+ 0.05006639286875725,
1663
+ 0.04979243874549866,
1664
+ 0.04952239617705345,
1665
+ 0.04925618693232536,
1666
+ 0.04899372160434723,
1667
+ 0.04873490333557129,
1668
+ 0.04847966134548187,
1669
+ 0.04822646081447601,
1670
+ 0.04797281324863434,
1671
+ 0.04772261530160904,
1672
+ 0.04747655615210533,
1673
+ 0.047237198799848557,
1674
+ 0.04700261726975441,
1675
+ 0.04677387326955795,
1676
+ 0.04654793068766594,
1677
+ 0.04632493481040001
1678
  ],
1679
  "type": "line"
1680
  }
 
2192
  ],
2193
  "data": [
2194
  [
2195
+ 48,
2196
+ "[0.77427191 0.21829212 0.12769502 0.74303615]",
2197
+ "[1.77427197 1.21829212 1.12769508 1.74303615]",
2198
+ "[2.4115757942199707, 2.461454391479492, 2.4113240242004395, 2.513977527618408]"
2199
  ],
2200
  [
2201
+ 28,
2202
+ "[0.79423058 0.07138705 0.061777 0.18766576]",
2203
+ "[1.79423058 1.07138705 1.061777 1.1876657 ]",
2204
+ "[2.076904296875, 2.2180778980255127, 2.1054983139038086, 2.2110257148742676]"
2205
  ],
2206
  [
2207
+ 23,
2208
+ "[0.90817457 0.89270043 0.38583666 0.66566533]",
2209
+ "[1.90817451 1.89270043 1.3858366 1.66566539]",
2210
+ "[2.777985095977783, 2.94404673576355, 2.5277156829833984, 2.7423088550567627]"
2211
  ],
2212
  [
2213
+ 60,
2214
+ "[0.67418337 0.79634351 0.23229051 0.71345252]",
2215
+ "[1.67418337 1.79634356 1.23229051 1.71345258]",
2216
+ "[2.5981178283691406, 2.790626049041748, 2.4383764266967773, 2.6503961086273193]"
2217
  ],
2218
  [
2219
+ 37,
2220
+ "[0.78956431 0.87284744 0.06880784 0.03455889]",
2221
+ "[1.78956437 1.87284744 1.06880784 1.03455889]",
2222
+ "[2.224992275238037, 2.6121742725372314, 2.115370512008667, 2.3977270126342773]"
2223
  ],
2224
  [
2225
+ 46,
2226
+ "[0.34084332 0.73018837 0.54168713 0.91440833]",
2227
+ "[1.34084332 1.73018837 1.54168713 1.91440833]",
2228
+ "[2.692025661468506, 2.6545825004577637, 2.6596198081970215, 2.750256299972534]"
2229
  ],
2230
  [
2231
+ 70,
2232
+ "[0.47963417 0.81818312 0.48720706 0.49339259]",
2233
+ "[1.47963417 1.81818318 1.48720706 1.49339259]",
2234
+ "[2.55342960357666, 2.662219762802124, 2.4359536170959473, 2.5876569747924805]"
2235
  ],
2236
  [
2237
+ 86,
2238
+ "[0.80893755 0.92237449 0.88346356 0.93164903]",
2239
+ "[1.80893755 1.92237449 1.88346362 1.93164897]",
2240
+ "[3.142144203186035, 3.0350942611694336, 2.8731184005737305, 2.966130495071411]"
2241
  ],
2242
  [
2243
+ 17,
2244
+ "[0.40167677 0.25953674 0.9407078 0.76308483]",
2245
+ "[1.40167677 1.25953674 1.9407078 1.76308489]",
2246
+ "[2.701760768890381, 2.3708462715148926, 2.77858829498291, 2.6853103637695312]"
2247
  ],
2248
  [
2249
+ 98,
2250
+ "[0.87608397 0.93200487 0.80169648 0.37758952]",
2251
+ "[1.87608397 1.93200493 1.80169654 1.37758946]",
2252
+ "[2.853145122528076, 2.880232572555542, 2.598814010620117, 2.730973482131958]"
2253
  ]
2254
  ]
2255
  },
 
2718
  ],
2719
  "data": [
2720
  [
2721
+ 6.55940055847168
2722
  ],
2723
  [
2724
+ 6.532864570617676
2725
  ],
2726
  [
2727
+ 6.317222595214844
2728
  ],
2729
  [
2730
+ 5.958171367645264
2731
  ],
2732
  [
2733
+ 5.608485221862793
2734
  ],
2735
  [
2736
+ 5.27166223526001
2737
  ],
2738
  [
2739
+ 4.9437642097473145
2740
  ],
2741
  [
2742
+ 4.621719837188721
2743
  ],
2744
  [
2745
+ 4.302500247955322
2746
  ],
2747
  [
2748
+ 3.924199342727661
2749
  ],
2750
  [
2751
+ 3.3956313133239746
2752
  ],
2753
  [
2754
+ 2.768808603286743
2755
  ],
2756
  [
2757
+ 2.3079161643981934
2758
  ],
2759
  [
2760
+ 2.0202383995056152
2761
  ],
2762
  [
2763
+ 1.8661450147628784
2764
  ],
2765
  [
2766
+ 1.791445255279541
2767
  ],
2768
  [
2769
+ 1.7561746835708618
2770
  ],
2771
  [
2772
+ 1.7389912605285645
2773
  ],
2774
  [
2775
+ 1.7301608324050903
2776
  ],
2777
  [
2778
+ 1.7253751754760742
2779
  ],
2780
  [
2781
+ 1.7226382493972778
2782
  ],
2783
  [
2784
+ 1.720971703529358
2785
  ],
2786
  [
2787
+ 1.7198742628097534
2788
  ],
2789
  [
2790
+ 1.7190840244293213
2791
  ],
2792
  [
2793
+ 1.7184607982635498
2794
  ],
2795
  [
2796
+ 1.7179292440414429
2797
  ],
2798
  [
2799
+ 1.7174499034881592
2800
  ],
2801
  [
2802
+ 1.7170003652572632
2803
  ],
2804
  [
2805
+ 1.7165690660476685
2806
  ],
2807
  [
2808
+ 1.716149926185608
2809
  ],
2810
  [
2811
+ 1.7157388925552368
2812
  ],
2813
  [
2814
+ 1.7153353691101074
2815
  ],
2816
  [
2817
+ 1.7149369716644287
2818
  ],
2819
  [
2820
+ 1.7145392894744873
2821
  ],
2822
  [
2823
+ 1.7141461372375488
2824
  ],
2825
  [
2826
+ 1.713756799697876
2827
  ],
2828
  [
2829
+ 1.7133721113204956
2830
  ],
2831
  [
2832
+ 1.7129909992218018
2833
  ],
2834
  [
2835
+ 1.71261465549469
2836
  ],
2837
  [
2838
+ 1.712242841720581
2839
  ],
2840
  [
2841
+ 1.7118747234344482
2842
  ],
2843
  [
2844
+ 1.711510181427002
2845
  ],
2846
  [
2847
+ 1.7111490964889526
2848
  ],
2849
  [
2850
+ 1.7107914686203003
2851
  ],
2852
  [
2853
+ 1.710437297821045
2854
  ],
2855
  [
2856
+ 1.7100863456726074
2857
  ],
2858
  [
2859
+ 1.709738850593567
2860
  ],
2861
  [
2862
+ 1.7093948125839233
2863
  ],
2864
  [
2865
+ 1.70905339717865
2866
  ],
2867
  [
2868
+ 1.7087154388427734
2869
  ],
2870
  [
2871
+ 1.7083803415298462
2872
  ],
2873
  [
2874
+ 1.7080481052398682
2875
  ],
2876
  [
2877
+ 1.7077194452285767
2878
  ],
2879
  [
2880
+ 1.7073934078216553
2881
  ],
2882
  [
2883
+ 1.7070705890655518
2884
  ],
2885
  [
2886
+ 1.706750512123108
2887
  ],
2888
  [
2889
+ 1.7064330577850342
2890
  ],
2891
  [
2892
+ 1.7061185836791992
2893
  ],
2894
  [
2895
+ 1.7058073282241821
2896
  ],
2897
  [
2898
+ 1.705498456954956
2899
  ],
2900
  [
2901
+ 1.7051914930343628
2902
  ],
2903
  [
2904
+ 1.7048841714859009
2905
  ],
2906
  [
2907
+ 1.7045789957046509
2908
  ],
2909
  [
2910
+ 1.7042763233184814
2911
  ],
2912
  [
2913
+ 1.7039755582809448
2914
  ],
2915
  [
2916
+ 1.7036770582199097
2917
  ],
2918
  [
2919
+ 1.703381061553955
2920
  ],
2921
  [
2922
+ 1.7030868530273438
2923
  ],
2924
  [
2925
+ 1.7027950286865234
2926
  ],
2927
  [
2928
+ 1.702505111694336
2929
  ],
2930
  [
2931
+ 1.7022191286087036
2932
  ],
2933
  [
2934
+ 1.7019346952438354
2935
  ],
2936
  [
2937
+ 1.7016525268554688
2938
  ],
2939
  [
2940
+ 1.7013723850250244
2941
  ],
2942
  [
2943
+ 1.7010945081710815
2944
  ],
2945
  [
2946
+ 1.700818419456482
2947
  ],
2948
  [
2949
+ 1.7005443572998047
2950
  ],
2951
  [
2952
+ 1.7002726793289185
2953
  ],
2954
  [
2955
+ 1.7000021934509277
2956
  ],
2957
  [
2958
+ 1.6997339725494385
2959
  ],
2960
  [
2961
+ 1.6994673013687134
2962
  ],
2963
  [
2964
+ 1.6992027759552002
2965
  ],
2966
  [
2967
+ 1.698939561843872
2968
  ],
2969
  [
2970
+ 1.6986777782440186
2971
  ],
2972
  [
2973
+ 1.6984175443649292
2974
  ],
2975
  [
2976
+ 1.6981593370437622
2977
  ],
2978
  [
2979
+ 1.6979025602340698
2980
  ],
2981
  [
2982
+ 1.6976478099822998
2983
  ],
2984
  [
2985
+ 1.6973942518234253
2986
  ],
2987
  [
2988
+ 1.6971427202224731
2989
  ],
2990
  [
2991
+ 1.696892499923706
2992
  ],
2993
  [
2994
+ 1.696643352508545
2995
  ],
2996
  [
2997
+ 1.6963953971862793
2998
  ],
2999
  [
3000
+ 1.6961476802825928
3001
  ],
3002
  [
3003
+ 1.6959006786346436
3004
  ],
3005
  [
3006
+ 1.6956558227539062
3007
  ],
3008
  [
3009
+ 1.6954121589660645
3010
  ],
3011
  [
3012
+ 1.6951699256896973
3013
  ],
3014
  [
3015
+ 1.6949294805526733
3016
  ],
3017
  [
3018
+ 1.694690227508545
3019
  ]
3020
  ]
3021
  }
3022
  },
3023
  "other": {
3024
+ "model": "ModelConfig(model=Sequential(\n (0) - Identity(): Input__tensor_1_output -> START_Repeat_1_output\n (1) - Linear(4, 4, bias=True): START_Repeat_1_output -> Linear_1_output\n (2) - <function leaky_relu at 0x7a324738f100>: Linear_1_output -> Activation_1_output\n (3) - Identity(): Activation_1_output -> START_Repeat_1_output\n (4) - Linear(4, 4, bias=True): START_Repeat_1_output -> Linear_1_output\n (5) - <function leaky_relu at 0x7a324738f100>: Linear_1_output -> Activation_1_output\n (6) - Identity(): Activation_1_output -> END_Repeat_1_output\n (7) - Identity(): END_Repeat_1_output -> Output_1_x\n (8) - Identity(): Output_1_x -> Output_1_x\n), model_inputs=['Input__tensor_1_output'], model_outputs=['Output_1_x'], loss_inputs=['Input__tensor_3_output', 'Output_1_x'], loss=Sequential(\n (0) - <function constant_vector.<locals>.<lambda> at 0x7a3012b563e0>: nothing -> Constant_vector_1_output\n (1) - <built-in method add of type object at 0x7a324399ef00>: Input__tensor_3_output, Constant_vector_1_output -> Add_1_output\n (2) - <function mse_loss at 0x7a3247398c20>: Output_1_x, Add_1_output -> MSE_loss_2_output\n (3) - Identity(): MSE_loss_2_output -> loss\n), optimizer_parameters={'lr': 0.1, 'type': <OptionsFor_type.SGD: 4>}, optimizer=SGD (\nParameter Group 0\n dampening: 0\n differentiable: False\n foreach: None\n fused: None\n lr: 0.1\n maximize: False\n momentum: 0\n nesterov: False\n weight_decay: 0\n), source_workspace='Model definition.lynxkite.json', trained=True)"
3025
  },
3026
  "relations": []
3027
  },
 
3128
  {
3129
  "data": [
3130
  [
3131
+ -1736.5657958984375,
3132
+ 1719.049560546875,
3133
  "",
3134
+ -14.092952728271484
3135
  ],
3136
  [
3137
+ -907.293212890625,
3138
+ -499.864501953125,
3139
  "",
3140
+ -13.588829040527344
3141
  ],
3142
  [
3143
+ 261.7459716796875,
3144
+ 1838.5341796875,
3145
  "",
3146
+ -16.032638549804688
3147
  ],
3148
  [
3149
+ -2163.96533203125,
3150
+ -1887.328125,
3151
  "",
3152
+ -11.786212921142578
3153
  ],
3154
  [
3155
+ 1305.711669921875,
3156
+ -779.961181640625,
3157
  "",
3158
+ -13.029867172241211
3159
  ],
3160
  [
3161
+ 2229.743408203125,
3162
+ -2041.06298828125,
3163
  "",
3164
+ -12.392581939697266
3165
  ],
3166
  [
3167
+ 2131.1240234375,
3168
+ 2083.50732421875,
3169
  "",
3170
+ -11.095306396484375
3171
  ],
3172
  [
3173
+ -1227.827880859375,
3174
+ 425.2873840332031,
3175
  "",
3176
+ -16.72292709350586
3177
  ],
3178
  [
3179
+ 721.362548828125,
3180
+ 242.73641967773438,
3181
  "",
3182
+ -15.357608795166016
3183
  ],
3184
  [
3185
+ -80.076904296875,
3186
+ -2056.202880859375,
3187
  "",
3188
+ -14.75583267211914
3189
  ]
3190
  ],
3191
+ "symbolSize": 39.81071705534973,
3192
  "type": "scatter"
3193
  }
3194
  ],
 
3215
  "#FDE725"
3216
  ]
3217
  },
3218
+ "max": -11.095306396484375,
3219
+ "min": -16.72292709350586,
3220
  "right": 10,
3221
  "top": "center"
3222
  },
 
3303
  "type": "<class 'str'>"
3304
  }
3305
  },
3306
+ "metric": {
3307
+ "default": "euclidean",
3308
+ "name": "metric",
3309
+ "type": {
3310
+ "enum": [
3311
+ "l1",
3312
+ "cityblock",
3313
+ "taxicab",
3314
+ "manhattan",
3315
+ "euclidean",
3316
+ "l2",
3317
+ "sqeuclidean",
3318
+ "canberra",
3319
+ "minkowski",
3320
+ "chebyshev",
3321
+ "linf",
3322
+ "cosine",
3323
+ "correlation",
3324
+ "hellinger",
3325
+ "hamming"
3326
+ ]
3327
+ }
3328
+ },
3329
+ "min_dist": {
3330
+ "default": 0.1,
3331
+ "name": "min_dist",
3332
+ "type": {
3333
+ "type": "<class 'float'>"
3334
+ }
3335
+ },
3336
+ "n_neighbors": {
3337
+ "default": 15.0,
3338
+ "name": "n_neighbors",
3339
+ "type": {
3340
+ "type": "<class 'int'>"
3341
+ }
3342
+ },
3343
  "table_name": {
3344
  "default": "nodes",
3345
  "name": "table_name",
 
3355
  }
3356
  }
3357
  },
 
 
 
 
3358
  "type": "visualization"
3359
  },
3360
  "params": {
examples/NetworkX demo.lynxkite.json CHANGED
The diff for this file is too large to render. See raw diff
 
examples/Word2vec.lynxkite.json CHANGED
The diff for this file is too large to render. See raw diff
 
lynxkite-graph-analytics/src/lynxkite_graph_analytics/ml_ops.py CHANGED
@@ -36,8 +36,7 @@ def define_model(
36
  ):
37
  """Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
38
  assert model_workspace, "Model workspace is unset."
39
- ws = load_ws(model_workspace)
40
- # Build the model without inputs, to get its interface.
41
  m = pytorch_core.build_model(ws)
42
  m.source_workspace = model_workspace
43
  bundle = bundle.copy()
@@ -136,11 +135,6 @@ def view_loss(bundle: core.Bundle):
136
  return v
137
 
138
 
139
- @op("Reduce dimensions")
140
- def reduce_dimensions(bundle: core.Bundle):
141
- return
142
-
143
-
144
  VIRIDIS = [
145
  "#440154",
146
  "#482777",
 
36
  ):
37
  """Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
38
  assert model_workspace, "Model workspace is unset."
39
+ ws = load_ws(model_workspace + ".lynxkite.json")
 
40
  m = pytorch_core.build_model(ws)
41
  m.source_workspace = model_workspace
42
  bundle = bundle.copy()
 
135
  return v
136
 
137
 
 
 
 
 
 
138
  VIRIDIS = [
139
  "#440154",
140
  "#482777",
lynxkite-pillow-example/src/lynxkite_pillow_example/__init__.py CHANGED
@@ -35,7 +35,7 @@ def flip_horizontally(image: Image):
35
  return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
36
 
37
 
38
- @op("Flip verically")
39
  def flip_vertically(image: Image):
40
  return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
41
 
 
35
  return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
36
 
37
 
38
+ @op("Flip vertically")
39
  def flip_vertically(image: Image):
40
  return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
41