darabos commited on
Commit
aad49e6
·
unverified ·
2 Parent(s): d2f0312 f0d4ca5

Merge pull request #132 from biggraph/darabos-execute-button

Browse files
.github/workflows/test.yaml CHANGED
@@ -8,6 +8,8 @@ on:
8
  jobs:
9
  test:
10
  runs-on: ubuntu-latest
 
 
11
  steps:
12
  - uses: actions/checkout@v4
13
 
@@ -24,6 +26,8 @@ jobs:
24
  run: |
25
  eval `ssh-agent -s`
26
  ssh-add - <<< '${{ secrets.LYNXSCRIBE_DEPLOY_KEY }}'
 
 
27
  uv pip install \
28
  -e lynxkite-core/[dev] \
29
  -e lynxkite-app/[dev] \
@@ -31,15 +35,11 @@ jobs:
31
  -e lynxkite-bio \
32
  -e lynxkite-lynxscribe/ \
33
  -e lynxkite-pillow-example/
34
- env:
35
- UV_SYSTEM_PYTHON: 1
36
 
37
  - name: Run pre-commits
38
  run: |
39
  uv pip install pre-commit
40
  pre-commit run --all-files
41
- env:
42
- UV_SYSTEM_PYTHON: 1
43
 
44
  - name: Run core tests
45
  run: |
@@ -65,8 +65,6 @@ jobs:
65
  run: |
66
  uv pip install mkdocs-material mkdocstrings[python]
67
  mkdocs build
68
- env:
69
- UV_SYSTEM_PYTHON: 1
70
 
71
  - uses: actions/setup-node@v4
72
  with:
 
8
  jobs:
9
  test:
10
  runs-on: ubuntu-latest
11
+ env:
12
+ UV_SYSTEM_PYTHON: 1
13
  steps:
14
  - uses: actions/checkout@v4
15
 
 
26
  run: |
27
  eval `ssh-agent -s`
28
  ssh-add - <<< '${{ secrets.LYNXSCRIBE_DEPLOY_KEY }}'
29
+ uv venv
30
+ . .venv/bin/activate
31
  uv pip install \
32
  -e lynxkite-core/[dev] \
33
  -e lynxkite-app/[dev] \
 
35
  -e lynxkite-bio \
36
  -e lynxkite-lynxscribe/ \
37
  -e lynxkite-pillow-example/
 
 
38
 
39
  - name: Run pre-commits
40
  run: |
41
  uv pip install pre-commit
42
  pre-commit run --all-files
 
 
43
 
44
  - name: Run core tests
45
  run: |
 
65
  run: |
66
  uv pip install mkdocs-material mkdocstrings[python]
67
  mkdocs build
 
 
68
 
69
  - uses: actions/setup-node@v4
70
  with:
examples/AIMO.lynxkite.json CHANGED
@@ -15,66 +15,59 @@
15
  "targetHandle": "input"
16
  },
17
  {
18
- "id": "Create prompt 1 Ask LLM 3",
19
- "source": "Create prompt 1",
20
  "sourceHandle": "output",
21
- "target": "Ask LLM 3",
22
  "targetHandle": "input"
23
  },
24
  {
25
- "id": "Ask LLM 3 Create prompt 2",
26
- "source": "Ask LLM 3",
27
- "sourceHandle": "output",
28
- "target": "Create prompt 2",
29
  "targetHandle": "input"
30
  },
31
  {
32
- "id": "Ask LLM 3 View 1",
33
- "source": "Ask LLM 3",
34
- "sourceHandle": "output",
35
- "target": "View 1",
36
  "targetHandle": "input"
37
  },
38
  {
39
- "id": "Create prompt 2 Ask LLM 1",
40
- "source": "Create prompt 2",
41
  "sourceHandle": "output",
42
- "target": "Ask LLM 1",
43
  "targetHandle": "input"
44
  },
45
  {
46
- "id": "Loop 1 Create prompt 1",
47
- "source": "Loop 1",
48
  "sourceHandle": "output",
49
- "target": "Create prompt 1",
50
  "targetHandle": "input"
51
  },
52
  {
53
- "id": "Ask LLM 1 Branch 1",
54
- "source": "Ask LLM 1",
55
  "sourceHandle": "output",
56
- "target": "Branch 1",
57
- "targetHandle": "input"
58
- },
59
- {
60
- "id": "Branch 1 View 3",
61
- "source": "Branch 1",
62
- "sourceHandle": "true",
63
- "target": "View 3",
64
  "targetHandle": "input"
65
  },
66
  {
67
- "id": "Branch 1 Loop 1",
68
- "source": "Branch 1",
69
- "sourceHandle": "false",
70
- "target": "Loop 1",
71
  "targetHandle": "input"
72
  },
73
  {
74
- "id": "Input CSV 2 Create prompt 1",
75
- "source": "Input CSV 2",
76
  "sourceHandle": "output",
77
- "target": "Create prompt 1",
78
  "targetHandle": "input"
79
  }
80
  ],
@@ -82,28 +75,7 @@
82
  "nodes": [
83
  {
84
  "data": {
85
- "display": null,
86
- "error": null,
87
- "input_metadata": null,
88
- "meta": {
89
- "inputs": {
90
- "input": {
91
- "name": "input",
92
- "position": "left",
93
- "type": {
94
- "type": "<class 'inspect._empty'>"
95
- }
96
- }
97
- },
98
- "name": "View",
99
- "outputs": {},
100
- "params": {},
101
- "type": "table_view"
102
- },
103
- "params": {},
104
- "status": "done",
105
- "title": "View",
106
- "view": {
107
  "dataframes": {
108
  "df": {
109
  "columns": [
@@ -117,379 +89,529 @@
117
  [
118
  "229ee8",
119
  "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
120
- 52.0,
121
  "Please give a correct solution for this: Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
122
- " We start by finding the x-coordinates of points"
123
  ],
124
  [
125
  "246d26",
126
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
127
- 250.0,
128
  "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
129
- " Let's consider the numbers in the form of"
130
  ],
131
  [
132
  "2fc4ad",
133
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
134
- 702.0,
135
  "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
136
- " Let $S$ denote the set of all $"
137
  ],
138
  [
139
  "430b63",
140
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
141
- 800.0,
142
  "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
143
- " We can rewrite the given equation as $|x-"
144
  ],
145
  [
146
  "5277ed",
147
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
148
- 211.0,
149
  "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
150
- " Let the five terms of the geometric sequence be $"
151
  ],
152
  [
153
  "739bc9",
154
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
155
- 199.0,
156
  "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
157
- " Let's break down the problem.\n\n"
158
  ],
159
  [
160
  "82e2a0",
161
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
162
- 185.0,
163
  "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
164
- " The total number of outcomes when rolling four 6"
165
  ],
166
  [
167
  "8ee6f3",
168
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
169
- 320.0,
170
  "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
171
- " We see that the given equation is equivalent to either"
172
  ],
173
  [
174
  "bedda4",
175
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
176
- 480.0,
177
  "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
178
- " [asy] size(7cm); pair A"
179
  ],
180
  [
181
  "d7e9c9",
182
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
183
- 199.0,
184
  "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
185
- " Let $P(n)$ be the assertion that"
186
- ]
187
- ]
188
- }
189
- }
190
- }
191
- },
192
- "dragHandle": ".bg-primary",
193
- "dragging": false,
194
- "height": 497.0,
195
- "id": "View 1",
196
- "measured": {
197
- "height": 497.0,
198
- "width": 847.0
199
- },
200
- "parentId": null,
201
- "position": {
202
- "x": 918.8473117253317,
203
- "y": -788.2139000963755
204
- },
205
- "type": "table_view",
206
- "width": 847.0
207
- },
208
- {
209
- "data": {
210
- "display": {
211
- "dataframes": {
212
- "df": {
213
- "columns": [
214
- "id",
215
- "text",
216
- "answer"
217
- ],
218
- "data": [
219
- [
220
- "229ee8",
221
- "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
222
- 52
223
  ],
224
  [
225
  "246d26",
226
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
227
- 250
 
 
228
  ],
229
  [
230
  "2fc4ad",
231
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
232
- 702
 
 
233
  ],
234
  [
235
  "430b63",
236
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
237
- 800
 
 
238
  ],
239
  [
240
  "5277ed",
241
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
242
- 211
 
 
243
  ],
244
  [
245
  "739bc9",
246
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
247
- 199
 
 
248
  ],
249
  [
250
  "82e2a0",
251
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
252
- 185
 
 
253
  ],
254
  [
255
  "8ee6f3",
256
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
257
- 320
 
 
258
  ],
259
  [
260
  "bedda4",
261
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
262
- 480
 
 
263
  ],
264
  [
265
  "d7e9c9",
266
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
267
- 199
 
 
268
  ],
269
  [
270
  "246d26",
271
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
272
- 250
 
 
273
  ],
274
  [
275
  "2fc4ad",
276
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
277
- 702
 
 
278
  ],
279
  [
280
  "430b63",
281
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
282
- 800
 
 
283
  ],
284
  [
285
  "5277ed",
286
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
287
- 211
 
 
288
  ],
289
  [
290
  "739bc9",
291
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
292
- 199
 
 
293
  ],
294
  [
295
  "82e2a0",
296
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
297
- 185
 
 
298
  ],
299
  [
300
  "8ee6f3",
301
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
302
- 320
 
 
303
  ],
304
  [
305
  "bedda4",
306
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
307
- 480
 
 
308
  ],
309
  [
310
  "d7e9c9",
311
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
312
- 199
 
 
313
  ],
314
  [
315
  "246d26",
316
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
317
- 250
 
 
318
  ],
319
  [
320
  "2fc4ad",
321
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
322
- 702
 
 
323
  ],
324
  [
325
  "430b63",
326
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
327
- 800
 
 
328
  ],
329
  [
330
  "5277ed",
331
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
332
- 211
 
 
333
  ],
334
  [
335
  "739bc9",
336
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
337
- 199
 
 
338
  ],
339
  [
340
  "82e2a0",
341
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
342
- 185
 
 
343
  ],
344
  [
345
  "8ee6f3",
346
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
347
- 320
 
 
348
  ],
349
  [
350
  "bedda4",
351
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
352
- 480
 
 
353
  ],
354
  [
355
  "d7e9c9",
356
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
357
- 199
 
 
358
  ],
359
  [
360
  "246d26",
361
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
362
- 250
 
 
363
  ],
364
  [
365
  "2fc4ad",
366
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
367
- 702
 
 
368
  ],
369
  [
370
  "430b63",
371
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
372
- 800
 
 
373
  ],
374
  [
375
  "5277ed",
376
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
377
- 211
 
 
378
  ],
379
  [
380
  "739bc9",
381
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
382
- 199
 
 
383
  ],
384
  [
385
  "82e2a0",
386
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
387
- 185
 
 
388
  ],
389
  [
390
  "8ee6f3",
391
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
392
- 320
 
 
393
  ],
394
  [
395
  "bedda4",
396
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
397
- 480
 
 
398
  ],
399
  [
400
  "d7e9c9",
401
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
402
- 199
 
 
403
  ],
404
  [
405
  "246d26",
406
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
407
- 250
 
 
408
  ],
409
  [
410
  "2fc4ad",
411
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
412
- 702
 
 
413
  ],
414
  [
415
  "430b63",
416
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
417
- 800
 
 
418
  ],
419
  [
420
  "5277ed",
421
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
422
- 211
 
 
423
  ],
424
  [
425
  "739bc9",
426
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
427
- 199
 
 
428
  ],
429
  [
430
  "82e2a0",
431
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
432
- 185
 
 
433
  ],
434
  [
435
  "8ee6f3",
436
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
437
- 320
 
 
438
  ],
439
  [
440
  "bedda4",
441
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
442
- 480
 
 
443
  ],
444
  [
445
  "d7e9c9",
446
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
447
- 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448
  ],
449
  [
450
  "246d26",
451
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
452
- 250
 
 
453
  ],
454
  [
455
  "2fc4ad",
456
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
457
- 702
 
 
458
  ],
459
  [
460
  "430b63",
461
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
462
- 800
 
 
463
  ],
464
  [
465
  "5277ed",
466
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
467
- 211
 
 
468
  ],
469
  [
470
  "739bc9",
471
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
472
- 199
 
 
473
  ],
474
  [
475
  "82e2a0",
476
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
477
- 185
 
 
478
  ],
479
  [
480
  "8ee6f3",
481
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
482
- 320
 
 
483
  ],
484
  [
485
  "bedda4",
486
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
487
- 480
 
 
488
  ],
489
  [
490
  "d7e9c9",
491
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
492
- 199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
  ],
494
  [
495
  "246d26",
@@ -1241,7 +1363,7 @@
1241
  "__execution_delay": 0.0,
1242
  "collapsed": null,
1243
  "display": null,
1244
- "error": "ask_llm() got an unexpected keyword argument 'model'",
1245
  "input_metadata": null,
1246
  "meta": {
1247
  "inputs": {
@@ -1253,10 +1375,17 @@
1253
  }
1254
  }
1255
  },
1256
- "name": "Ask LLM",
1257
  "outputs": {
1258
- "output": {
1259
- "name": "output",
 
 
 
 
 
 
 
1260
  "position": "right",
1261
  "type": {
1262
  "type": "None"
@@ -1264,45 +1393,34 @@
1264
  }
1265
  },
1266
  "params": {
1267
- "accepted_regex": {
1268
  "default": null,
1269
- "name": "accepted_regex",
1270
  "type": {
1271
  "type": "<class 'str'>"
1272
  }
1273
- },
1274
- "max_tokens": {
1275
- "default": 100.0,
1276
- "name": "max_tokens",
1277
- "type": {
1278
- "type": "<class 'int'>"
1279
- }
1280
  }
1281
  },
1282
  "type": "basic"
1283
  },
1284
  "params": {
1285
- "accepted_regex": null,
1286
- "max_tokens": 100.0,
1287
- "model": "SultanR/SmolTulu-1.7b-Instruct"
1288
  },
1289
  "status": "done",
1290
- "title": "Ask LLM"
1291
  },
1292
  "dragHandle": ".bg-primary",
1293
- "height": 331.0,
1294
- "id": "Ask LLM 3",
1295
  "position": {
1296
- "x": 404.2326800558385,
1297
- "y": -173.5420967906593
1298
  },
1299
  "type": "basic",
1300
- "width": 372.0
1301
  },
1302
  {
1303
  "data": {
1304
- "__execution_delay": 0.0,
1305
- "collapsed": null,
1306
  "display": null,
1307
  "error": null,
1308
  "input_metadata": null,
@@ -1342,32 +1460,35 @@
1342
  }
1343
  }
1344
  },
 
 
 
 
1345
  "type": "basic"
1346
  },
1347
  "params": {
1348
- "accepted_regex": "yes|no",
1349
- "max_tokens": "100",
1350
- "model": "SultanR/SmolTulu-1.7b-Instruct"
1351
  },
1352
  "status": "done",
1353
  "title": "Ask LLM"
1354
  },
1355
  "dragHandle": ".bg-primary",
1356
- "height": 328.0,
1357
- "id": "Ask LLM 1",
1358
  "position": {
1359
- "x": 1382.8452916325896,
1360
- "y": 6.3459091373125105
1361
  },
1362
  "type": "basic",
1363
- "width": 408.0
1364
  },
1365
  {
1366
  "data": {
1367
  "__execution_delay": 0.0,
1368
  "collapsed": null,
1369
  "display": null,
1370
- "error": null,
1371
  "input_metadata": null,
1372
  "meta": {
1373
  "inputs": {
@@ -1379,62 +1500,7 @@
1379
  }
1380
  }
1381
  },
1382
- "name": "Branch",
1383
- "outputs": {
1384
- "false": {
1385
- "name": "false",
1386
- "position": "right",
1387
- "type": {
1388
- "type": "None"
1389
- }
1390
- },
1391
- "true": {
1392
- "name": "true",
1393
- "position": "right",
1394
- "type": {
1395
- "type": "None"
1396
- }
1397
- }
1398
- },
1399
- "params": {
1400
- "expression": {
1401
- "default": null,
1402
- "name": "expression",
1403
- "type": {
1404
- "type": "<class 'str'>"
1405
- }
1406
- }
1407
- },
1408
- "position": {
1409
- "x": 839.0,
1410
- "y": 427.0
1411
- },
1412
- "type": "basic"
1413
- },
1414
- "params": {
1415
- "expression": "yes"
1416
- },
1417
- "status": "done",
1418
- "title": "Branch"
1419
- },
1420
- "dragHandle": ".bg-primary",
1421
- "height": 200.0,
1422
- "id": "Branch 1",
1423
- "position": {
1424
- "x": 1960.130375806953,
1425
- "y": 35.04769879986424
1426
- },
1427
- "type": "basic",
1428
- "width": 200.0
1429
- },
1430
- {
1431
- "data": {
1432
- "display": null,
1433
- "error": "[Errno 2] No such file or directory: ''",
1434
- "input_metadata": null,
1435
- "meta": {
1436
- "inputs": {},
1437
- "name": "Input CSV",
1438
  "outputs": {
1439
  "output": {
1440
  "name": "output",
@@ -1445,43 +1511,43 @@
1445
  }
1446
  },
1447
  "params": {
1448
- "filename": {
1449
  "default": null,
1450
- "name": "filename",
1451
  "type": {
1452
- "format": "path"
1453
  }
1454
  },
1455
- "key": {
1456
- "default": null,
1457
- "name": "key",
1458
  "type": {
1459
- "type": "<class 'str'>"
1460
  }
1461
  }
1462
  },
1463
  "position": {
1464
- "x": 357.0,
1465
- "y": 548.0
1466
  },
1467
  "type": "basic"
1468
  },
1469
  "params": {
1470
- "filename": null,
1471
- "key": null
1472
  },
1473
  "status": "done",
1474
- "title": "Input CSV"
1475
  },
1476
  "dragHandle": ".bg-primary",
1477
- "height": 200.0,
1478
- "id": "Input CSV 2",
1479
  "position": {
1480
- "x": -555.0,
1481
- "y": 75.0
1482
  },
1483
  "type": "basic",
1484
- "width": 200.0
1485
  }
1486
  ]
1487
  }
 
15
  "targetHandle": "input"
16
  },
17
  {
18
+ "id": "Loop 1 Create prompt 1",
19
+ "source": "Loop 1",
20
  "sourceHandle": "output",
21
+ "target": "Create prompt 1",
22
  "targetHandle": "input"
23
  },
24
  {
25
+ "id": "Branch 1 View 3",
26
+ "source": "Branch 1",
27
+ "sourceHandle": "true",
28
+ "target": "View 3",
29
  "targetHandle": "input"
30
  },
31
  {
32
+ "id": "Branch 1 Loop 1",
33
+ "source": "Branch 1",
34
+ "sourceHandle": "false",
35
+ "target": "Loop 1",
36
  "targetHandle": "input"
37
  },
38
  {
39
+ "id": "Create prompt 1 Ask LLM 2",
40
+ "source": "Create prompt 1",
41
  "sourceHandle": "output",
42
+ "target": "Ask LLM 2",
43
  "targetHandle": "input"
44
  },
45
  {
46
+ "id": "Ask LLM 2 Create prompt 2",
47
+ "source": "Ask LLM 2",
48
  "sourceHandle": "output",
49
+ "target": "Create prompt 2",
50
  "targetHandle": "input"
51
  },
52
  {
53
+ "id": "Ask LLM 2 View 1",
54
+ "source": "Ask LLM 2",
55
  "sourceHandle": "output",
56
+ "target": "View 1",
 
 
 
 
 
 
 
57
  "targetHandle": "input"
58
  },
59
  {
60
+ "id": "Ask LLM 3 Branch 1",
61
+ "source": "Ask LLM 3",
62
+ "sourceHandle": "output",
63
+ "target": "Branch 1",
64
  "targetHandle": "input"
65
  },
66
  {
67
+ "id": "Create prompt 2 Ask LLM 3",
68
+ "source": "Create prompt 2",
69
  "sourceHandle": "output",
70
+ "target": "Ask LLM 3",
71
  "targetHandle": "input"
72
  }
73
  ],
 
75
  "nodes": [
76
  {
77
  "data": {
78
+ "display": {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  "dataframes": {
80
  "df": {
81
  "columns": [
 
89
  [
90
  "229ee8",
91
  "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
92
+ 52,
93
  "Please give a correct solution for this: Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
94
+ "To find the points of intersection \\( A \\) and \\( B \\) of the parabola \\( y = kx^2 - 2kx + l \\) and the line \\( y = 4 \\), we set the equations equal:\n\n\\[\nkx^2 - 2kx + l = 4\n\\]\n\nRearranging this equation, we have:\n\n\\[\nkx^2 - 2kx + (l - 4) = 0\n\\]\n\nThis is"
95
  ],
96
  [
97
  "246d26",
98
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
99
+ 250,
100
  "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
101
+ "To solve this problem, we start by letting \\( Y \\) denote the set of yellow numbers and \\( B \\) denote the set of blue numbers. The condition provided states that for any two yellow numbers \\( y_1, y_2 \\in Y \\), their sum \\( y_1 + y_2 \\) must equal some blue number \\( b \\in B \\). \n\nGiven that we are working with three-digit numbers, we note that any number \\( y \\) in \\("
102
  ],
103
  [
104
  "2fc4ad",
105
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
106
+ 702,
107
  "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
108
+ "To solve the problem, we first need to understand the sparkle operation performed on a positive integer \\( n \\). The sparkle of \\( n \\), denoted as \\( S(n) \\), is defined as the sum of its digits, denoted \\( s(n) \\), followed by taking the factorial of that sum, i.e., \n\n\\[\nS(n) = s(n)!\n\\]\n\nWe are tasked with finding \"special\" numbers \u2014 those numbers such that starting from them, all subsequent values"
109
  ],
110
  [
111
  "430b63",
112
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
113
+ 800,
114
  "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
115
+ "We need to minimize the expression \\( f(x, y) = 5x^2 + 5y^2 - 8xy \\) under the constraint given by the equation \\( |x - 2y| + |y - 2x| = 40 \\).\n\nFirst, we analyze the constraint \\( |x - 2y| + |y - 2x| = 40 \\). This absolute value constraint suggests there are multiple cases to consider. Let's define the"
116
  ],
117
  [
118
  "5277ed",
119
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
120
+ 211,
121
  "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
122
+ "To find a unique increasing geometric sequence of five 2-digit integers, we can denote the integers in the sequence as follows:\n\n\\[\na, ar, ar^2, ar^3, ar^4\n\\]\n\nwhere \\(a\\) is the first term and \\(r\\) is the common ratio.\n\nSince we want each term to be a two-digit integer, we have the following constraints:\n\n\\[\n10 \\leq a < 100\n\\]\n\\[\n10 \\le"
123
  ],
124
  [
125
  "739bc9",
126
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
127
+ 199,
128
  "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
129
+ "To solve the equation \\( \\vert \\vert x-1 \\vert -2 \\vert = \\frac{m}{100} \\) for the number of positive integers \\( m \\) that yield \\( 4 \\) distinct solutions, we first analyze the expression \\( \\vert \\vert x-1 \\vert -2 \\vert \\).\n\n1. **Break down the expression:**\n Let \\( y = \\vert x - 1 \\vert \\). Then, we rewrite the equation as"
130
  ],
131
  [
132
  "82e2a0",
133
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
134
+ 185,
135
  "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
136
+ "Given that we want the probability that the highest roll of four 6-sided dice is exactly 5, we need to consider two things: that at least one die shows a 5 and no die shows a 6.\n\n### Step 1: Calculate the total number of outcomes when rolling four dice.\nEach die has 6 faces, so when we roll four dice, the total number of possible outcomes is:\n\n\\[\n6^4 = 1296.\n\\]\n\n### Step 2:"
137
  ],
138
  [
139
  "8ee6f3",
140
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
141
+ 320,
142
  "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
143
+ "To solve the equation \n\n\\[\n((|x + y| - 10)^2 + (|x - y| - 10)^2)((|x| - 8)^2 + (|y| - 8)^2) = 0,\n\\]\n\nwe need to analyze the two factors separately and determine the resultant sets of points.\n\n### Step 1: Analyze the first factor\n\nThe expression \\((|x + y| - 10)^2 + (|x"
144
  ],
145
  [
146
  "bedda4",
147
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
148
+ 480,
149
  "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
150
+ "To solve the problem, we first establish the coordinates of the points in the unit square \\(ABCD\\). \n\nLet the square \\(ABCD\\) have the following coordinates:\n- \\(A(0, 1)\\)\n- \\(B(1, 1)\\)\n- \\(C(1, 0)\\)\n- \\(D(0, 0)\\)\n\nNext, we define point \\(P\\) on segment \\(AB\\) such that \\(AP = \\frac{1"
151
  ],
152
  [
153
  "d7e9c9",
154
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
155
+ 199,
156
  "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
157
+ "To find the function \\( f \\) satisfying the conditions \\( f(f(f(n))) = 8n - 7 \\) and \\( f(2n) = 2f(n) + 1 \\), let's start investigating each condition.\n\nFrom the first condition, we can substitute \\( n = 1 \\):\n\\[\nf(f(f(1))) = 8 \\cdot 1 - 7 = 1.\n\\]\nLet \\( a = f(1) \\)."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  ],
159
  [
160
  "246d26",
161
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
162
+ 250,
163
+ "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
164
+ "To solve this problem, we start by letting \\( Y \\) denote the set of yellow numbers and \\( B \\) denote the set of blue numbers. The condition provided states that for any two yellow numbers \\( y_1, y_2 \\in Y \\), their sum \\( y_1 + y_2 \\) must equal some blue number \\( b \\in B \\). \n\nGiven that we are working with three-digit numbers, we note that any number \\( y \\) in \\("
165
  ],
166
  [
167
  "2fc4ad",
168
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
169
+ 702,
170
+ "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
171
+ "To solve the problem, we first need to understand the sparkle operation performed on a positive integer \\( n \\). The sparkle of \\( n \\), denoted as \\( S(n) \\), is defined as the sum of its digits, denoted \\( s(n) \\), followed by taking the factorial of that sum, i.e., \n\n\\[\nS(n) = s(n)!\n\\]\n\nWe are tasked with finding \"special\" numbers \u2014 those numbers such that starting from them, all subsequent values"
172
  ],
173
  [
174
  "430b63",
175
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
176
+ 800,
177
+ "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
178
+ "We need to minimize the expression \\( f(x, y) = 5x^2 + 5y^2 - 8xy \\) under the constraint given by the equation \\( |x - 2y| + |y - 2x| = 40 \\).\n\nFirst, we analyze the constraint \\( |x - 2y| + |y - 2x| = 40 \\). This absolute value constraint suggests there are multiple cases to consider. Let's define the"
179
  ],
180
  [
181
  "5277ed",
182
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
183
+ 211,
184
+ "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
185
+ "To find a unique increasing geometric sequence of five 2-digit integers, we can denote the integers in the sequence as follows:\n\n\\[\na, ar, ar^2, ar^3, ar^4\n\\]\n\nwhere \\(a\\) is the first term and \\(r\\) is the common ratio.\n\nSince we want each term to be a two-digit integer, we have the following constraints:\n\n\\[\n10 \\leq a < 100\n\\]\n\\[\n10 \\le"
186
  ],
187
  [
188
  "739bc9",
189
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
190
+ 199,
191
+ "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
192
+ "To solve the equation \\( \\vert \\vert x-1 \\vert -2 \\vert = \\frac{m}{100} \\) for the number of positive integers \\( m \\) that yield \\( 4 \\) distinct solutions, we first analyze the expression \\( \\vert \\vert x-1 \\vert -2 \\vert \\).\n\n1. **Break down the expression:**\n Let \\( y = \\vert x - 1 \\vert \\). Then, we rewrite the equation as"
193
  ],
194
  [
195
  "82e2a0",
196
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
197
+ 185,
198
+ "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
199
+ "Given that we want the probability that the highest roll of four 6-sided dice is exactly 5, we need to consider two things: that at least one die shows a 5 and no die shows a 6.\n\n### Step 1: Calculate the total number of outcomes when rolling four dice.\nEach die has 6 faces, so when we roll four dice, the total number of possible outcomes is:\n\n\\[\n6^4 = 1296.\n\\]\n\n### Step 2:"
200
  ],
201
  [
202
  "8ee6f3",
203
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
204
+ 320,
205
+ "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
206
+ "To solve the equation \n\n\\[\n((|x + y| - 10)^2 + (|x - y| - 10)^2)((|x| - 8)^2 + (|y| - 8)^2) = 0,\n\\]\n\nwe need to analyze the two factors separately and determine the resultant sets of points.\n\n### Step 1: Analyze the first factor\n\nThe expression \\((|x + y| - 10)^2 + (|x"
207
  ],
208
  [
209
  "bedda4",
210
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
211
+ 480,
212
+ "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
213
+ "To solve the problem, we first establish the coordinates of the points in the unit square \\(ABCD\\). \n\nLet the square \\(ABCD\\) have the following coordinates:\n- \\(A(0, 1)\\)\n- \\(B(1, 1)\\)\n- \\(C(1, 0)\\)\n- \\(D(0, 0)\\)\n\nNext, we define point \\(P\\) on segment \\(AB\\) such that \\(AP = \\frac{1"
214
  ],
215
  [
216
  "d7e9c9",
217
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
218
+ 199,
219
+ "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
220
+ "To find the function \\( f \\) satisfying the conditions \\( f(f(f(n))) = 8n - 7 \\) and \\( f(2n) = 2f(n) + 1 \\), let's start investigating each condition.\n\nFrom the first condition, we can substitute \\( n = 1 \\):\n\\[\nf(f(f(1))) = 8 \\cdot 1 - 7 = 1.\n\\]\nLet \\( a = f(1) \\)."
221
  ],
222
  [
223
  "246d26",
224
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
225
+ 250,
226
+ "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
227
+ "To solve this problem, we start by letting \\( Y \\) denote the set of yellow numbers and \\( B \\) denote the set of blue numbers. The condition provided states that for any two yellow numbers \\( y_1, y_2 \\in Y \\), their sum \\( y_1 + y_2 \\) must equal some blue number \\( b \\in B \\). \n\nGiven that we are working with three-digit numbers, we note that any number \\( y \\) in \\("
228
  ],
229
  [
230
  "2fc4ad",
231
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
232
+ 702,
233
+ "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
234
+ "To solve the problem, we first need to understand the sparkle operation performed on a positive integer \\( n \\). The sparkle of \\( n \\), denoted as \\( S(n) \\), is defined as the sum of its digits, denoted \\( s(n) \\), followed by taking the factorial of that sum, i.e., \n\n\\[\nS(n) = s(n)!\n\\]\n\nWe are tasked with finding \"special\" numbers \u2014 those numbers such that starting from them, all subsequent values"
235
  ],
236
  [
237
  "430b63",
238
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
239
+ 800,
240
+ "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
241
+ "We need to minimize the expression \\( f(x, y) = 5x^2 + 5y^2 - 8xy \\) under the constraint given by the equation \\( |x - 2y| + |y - 2x| = 40 \\).\n\nFirst, we analyze the constraint \\( |x - 2y| + |y - 2x| = 40 \\). This absolute value constraint suggests there are multiple cases to consider. Let's define the"
242
  ],
243
  [
244
  "5277ed",
245
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
246
+ 211,
247
+ "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
248
+ "To find a unique increasing geometric sequence of five 2-digit integers, we can denote the integers in the sequence as follows:\n\n\\[\na, ar, ar^2, ar^3, ar^4\n\\]\n\nwhere \\(a\\) is the first term and \\(r\\) is the common ratio.\n\nSince we want each term to be a two-digit integer, we have the following constraints:\n\n\\[\n10 \\leq a < 100\n\\]\n\\[\n10 \\le"
249
  ],
250
  [
251
  "739bc9",
252
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
253
+ 199,
254
+ "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
255
+ "To solve the equation \\( \\vert \\vert x-1 \\vert -2 \\vert = \\frac{m}{100} \\) for the number of positive integers \\( m \\) that yield \\( 4 \\) distinct solutions, we first analyze the expression \\( \\vert \\vert x-1 \\vert -2 \\vert \\).\n\n1. **Break down the expression:**\n Let \\( y = \\vert x - 1 \\vert \\). Then, we rewrite the equation as"
256
  ],
257
  [
258
  "82e2a0",
259
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
260
+ 185,
261
+ "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
262
+ "Given that we want the probability that the highest roll of four 6-sided dice is exactly 5, we need to consider two things: that at least one die shows a 5 and no die shows a 6.\n\n### Step 1: Calculate the total number of outcomes when rolling four dice.\nEach die has 6 faces, so when we roll four dice, the total number of possible outcomes is:\n\n\\[\n6^4 = 1296.\n\\]\n\n### Step 2:"
263
  ],
264
  [
265
  "8ee6f3",
266
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
267
+ 320,
268
+ "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
269
+ "To solve the equation \n\n\\[\n((|x + y| - 10)^2 + (|x - y| - 10)^2)((|x| - 8)^2 + (|y| - 8)^2) = 0,\n\\]\n\nwe need to analyze the two factors separately and determine the resultant sets of points.\n\n### Step 1: Analyze the first factor\n\nThe expression \\((|x + y| - 10)^2 + (|x"
270
  ],
271
  [
272
  "bedda4",
273
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
274
+ 480,
275
+ "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
276
+ "To solve the problem, we first establish the coordinates of the points in the unit square \\(ABCD\\). \n\nLet the square \\(ABCD\\) have the following coordinates:\n- \\(A(0, 1)\\)\n- \\(B(1, 1)\\)\n- \\(C(1, 0)\\)\n- \\(D(0, 0)\\)\n\nNext, we define point \\(P\\) on segment \\(AB\\) such that \\(AP = \\frac{1"
277
  ],
278
  [
279
  "d7e9c9",
280
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
281
+ 199,
282
+ "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
283
+ "To find the function \\( f \\) satisfying the conditions \\( f(f(f(n))) = 8n - 7 \\) and \\( f(2n) = 2f(n) + 1 \\), let's start investigating each condition.\n\nFrom the first condition, we can substitute \\( n = 1 \\):\n\\[\nf(f(f(1))) = 8 \\cdot 1 - 7 = 1.\n\\]\nLet \\( a = f(1) \\)."
284
  ],
285
  [
286
  "246d26",
287
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
288
+ 250,
289
+ "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
290
+ "To solve this problem, we start by letting \\( Y \\) denote the set of yellow numbers and \\( B \\) denote the set of blue numbers. The condition provided states that for any two yellow numbers \\( y_1, y_2 \\in Y \\), their sum \\( y_1 + y_2 \\) must equal some blue number \\( b \\in B \\). \n\nGiven that we are working with three-digit numbers, we note that any number \\( y \\) in \\("
291
  ],
292
  [
293
  "2fc4ad",
294
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
295
+ 702,
296
+ "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
297
+ "To solve the problem, we first need to understand the sparkle operation performed on a positive integer \\( n \\). The sparkle of \\( n \\), denoted as \\( S(n) \\), is defined as the sum of its digits, denoted \\( s(n) \\), followed by taking the factorial of that sum, i.e., \n\n\\[\nS(n) = s(n)!\n\\]\n\nWe are tasked with finding \"special\" numbers \u2014 those numbers such that starting from them, all subsequent values"
298
  ],
299
  [
300
  "430b63",
301
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
302
+ 800,
303
+ "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
304
+ "We need to minimize the expression \\( f(x, y) = 5x^2 + 5y^2 - 8xy \\) under the constraint given by the equation \\( |x - 2y| + |y - 2x| = 40 \\).\n\nFirst, we analyze the constraint \\( |x - 2y| + |y - 2x| = 40 \\). This absolute value constraint suggests there are multiple cases to consider. Let's define the"
305
  ],
306
  [
307
  "5277ed",
308
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
309
+ 211,
310
+ "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
311
+ "To find a unique increasing geometric sequence of five 2-digit integers, we can denote the integers in the sequence as follows:\n\n\\[\na, ar, ar^2, ar^3, ar^4\n\\]\n\nwhere \\(a\\) is the first term and \\(r\\) is the common ratio.\n\nSince we want each term to be a two-digit integer, we have the following constraints:\n\n\\[\n10 \\leq a < 100\n\\]\n\\[\n10 \\le"
312
  ],
313
  [
314
  "739bc9",
315
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
316
+ 199,
317
+ "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
318
+ "To solve the equation \\( \\vert \\vert x-1 \\vert -2 \\vert = \\frac{m}{100} \\) for the number of positive integers \\( m \\) that yield \\( 4 \\) distinct solutions, we first analyze the expression \\( \\vert \\vert x-1 \\vert -2 \\vert \\).\n\n1. **Break down the expression:**\n Let \\( y = \\vert x - 1 \\vert \\). Then, we rewrite the equation as"
319
  ],
320
  [
321
  "82e2a0",
322
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
323
+ 185,
324
+ "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
325
+ "Given that we want the probability that the highest roll of four 6-sided dice is exactly 5, we need to consider two things: that at least one die shows a 5 and no die shows a 6.\n\n### Step 1: Calculate the total number of outcomes when rolling four dice.\nEach die has 6 faces, so when we roll four dice, the total number of possible outcomes is:\n\n\\[\n6^4 = 1296.\n\\]\n\n### Step 2:"
326
  ],
327
  [
328
  "8ee6f3",
329
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
330
+ 320,
331
+ "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
332
+ "To solve the equation \n\n\\[\n((|x + y| - 10)^2 + (|x - y| - 10)^2)((|x| - 8)^2 + (|y| - 8)^2) = 0,\n\\]\n\nwe need to analyze the two factors separately and determine the resultant sets of points.\n\n### Step 1: Analyze the first factor\n\nThe expression \\((|x + y| - 10)^2 + (|x"
333
  ],
334
  [
335
  "bedda4",
336
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
337
+ 480,
338
+ "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
339
+ "To solve the problem, we first establish the coordinates of the points in the unit square \\(ABCD\\). \n\nLet the square \\(ABCD\\) have the following coordinates:\n- \\(A(0, 1)\\)\n- \\(B(1, 1)\\)\n- \\(C(1, 0)\\)\n- \\(D(0, 0)\\)\n\nNext, we define point \\(P\\) on segment \\(AB\\) such that \\(AP = \\frac{1"
340
  ],
341
  [
342
  "d7e9c9",
343
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
344
+ 199,
345
+ "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
346
+ "To find the function \\( f \\) satisfying the conditions \\( f(f(f(n))) = 8n - 7 \\) and \\( f(2n) = 2f(n) + 1 \\), let's start investigating each condition.\n\nFrom the first condition, we can substitute \\( n = 1 \\):\n\\[\nf(f(f(1))) = 8 \\cdot 1 - 7 = 1.\n\\]\nLet \\( a = f(1) \\)."
347
  ],
348
  [
349
  "246d26",
350
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
351
+ 250,
352
+ "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
353
+ "To solve this problem, we start by letting \\( Y \\) denote the set of yellow numbers and \\( B \\) denote the set of blue numbers. The condition provided states that for any two yellow numbers \\( y_1, y_2 \\in Y \\), their sum \\( y_1 + y_2 \\) must equal some blue number \\( b \\in B \\). \n\nGiven that we are working with three-digit numbers, we note that any number \\( y \\) in \\("
354
  ],
355
  [
356
  "2fc4ad",
357
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
358
+ 702,
359
+ "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
360
+ "To solve the problem, we first need to understand the sparkle operation performed on a positive integer \\( n \\). The sparkle of \\( n \\), denoted as \\( S(n) \\), is defined as the sum of its digits, denoted \\( s(n) \\), followed by taking the factorial of that sum, i.e., \n\n\\[\nS(n) = s(n)!\n\\]\n\nWe are tasked with finding \"special\" numbers \u2014 those numbers such that starting from them, all subsequent values"
361
  ],
362
  [
363
  "430b63",
364
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
365
+ 800,
366
+ "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
367
+ "We need to minimize the expression \\( f(x, y) = 5x^2 + 5y^2 - 8xy \\) under the constraint given by the equation \\( |x - 2y| + |y - 2x| = 40 \\).\n\nFirst, we analyze the constraint \\( |x - 2y| + |y - 2x| = 40 \\). This absolute value constraint suggests there are multiple cases to consider. Let's define the"
368
  ],
369
  [
370
  "5277ed",
371
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
372
+ 211,
373
+ "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
374
+ "To find a unique increasing geometric sequence of five 2-digit integers, we can denote the integers in the sequence as follows:\n\n\\[\na, ar, ar^2, ar^3, ar^4\n\\]\n\nwhere \\(a\\) is the first term and \\(r\\) is the common ratio.\n\nSince we want each term to be a two-digit integer, we have the following constraints:\n\n\\[\n10 \\leq a < 100\n\\]\n\\[\n10 \\le"
375
  ],
376
  [
377
  "739bc9",
378
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
379
+ 199,
380
+ "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
381
+ "To solve the equation \\( \\vert \\vert x-1 \\vert -2 \\vert = \\frac{m}{100} \\) for the number of positive integers \\( m \\) that yield \\( 4 \\) distinct solutions, we first analyze the expression \\( \\vert \\vert x-1 \\vert -2 \\vert \\).\n\n1. **Break down the expression:**\n Let \\( y = \\vert x - 1 \\vert \\). Then, we rewrite the equation as"
382
  ],
383
  [
384
  "82e2a0",
385
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
386
+ 185,
387
+ "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
388
+ "Given that we want the probability that the highest roll of four 6-sided dice is exactly 5, we need to consider two things: that at least one die shows a 5 and no die shows a 6.\n\n### Step 1: Calculate the total number of outcomes when rolling four dice.\nEach die has 6 faces, so when we roll four dice, the total number of possible outcomes is:\n\n\\[\n6^4 = 1296.\n\\]\n\n### Step 2:"
389
  ],
390
  [
391
  "8ee6f3",
392
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
393
+ 320,
394
+ "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
395
+ "To solve the equation \n\n\\[\n((|x + y| - 10)^2 + (|x - y| - 10)^2)((|x| - 8)^2 + (|y| - 8)^2) = 0,\n\\]\n\nwe need to analyze the two factors separately and determine the resultant sets of points.\n\n### Step 1: Analyze the first factor\n\nThe expression \\((|x + y| - 10)^2 + (|x"
396
  ],
397
  [
398
  "bedda4",
399
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
400
+ 480,
401
+ "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
402
+ "To solve the problem, we first establish the coordinates of the points in the unit square \\(ABCD\\). \n\nLet the square \\(ABCD\\) have the following coordinates:\n- \\(A(0, 1)\\)\n- \\(B(1, 1)\\)\n- \\(C(1, 0)\\)\n- \\(D(0, 0)\\)\n\nNext, we define point \\(P\\) on segment \\(AB\\) such that \\(AP = \\frac{1"
403
  ],
404
  [
405
  "d7e9c9",
406
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
407
+ 199,
408
+ "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
409
+ "To find the function \\( f \\) satisfying the conditions \\( f(f(f(n))) = 8n - 7 \\) and \\( f(2n) = 2f(n) + 1 \\), let's start investigating each condition.\n\nFrom the first condition, we can substitute \\( n = 1 \\):\n\\[\nf(f(f(1))) = 8 \\cdot 1 - 7 = 1.\n\\]\nLet \\( a = f(1) \\)."
410
  ],
411
  [
412
  "246d26",
413
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
414
+ 250,
415
+ "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
416
+ "To solve this problem, we start by letting \\( Y \\) denote the set of yellow numbers and \\( B \\) denote the set of blue numbers. The condition provided states that for any two yellow numbers \\( y_1, y_2 \\in Y \\), their sum \\( y_1 + y_2 \\) must equal some blue number \\( b \\in B \\). \n\nGiven that we are working with three-digit numbers, we note that any number \\( y \\) in \\("
417
  ],
418
  [
419
  "2fc4ad",
420
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
421
+ 702,
422
+ "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
423
+ "To solve the problem, we first need to understand the sparkle operation performed on a positive integer \\( n \\). The sparkle of \\( n \\), denoted as \\( S(n) \\), is defined as the sum of its digits, denoted \\( s(n) \\), followed by taking the factorial of that sum, i.e., \n\n\\[\nS(n) = s(n)!\n\\]\n\nWe are tasked with finding \"special\" numbers \u2014 those numbers such that starting from them, all subsequent values"
424
  ],
425
  [
426
  "430b63",
427
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
428
+ 800,
429
+ "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
430
+ "We need to minimize the expression \\( f(x, y) = 5x^2 + 5y^2 - 8xy \\) under the constraint given by the equation \\( |x - 2y| + |y - 2x| = 40 \\).\n\nFirst, we analyze the constraint \\( |x - 2y| + |y - 2x| = 40 \\). This absolute value constraint suggests there are multiple cases to consider. Let's define the"
431
  ],
432
  [
433
  "5277ed",
434
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
435
+ 211,
436
+ "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
437
+ "To find a unique increasing geometric sequence of five 2-digit integers, we can denote the integers in the sequence as follows:\n\n\\[\na, ar, ar^2, ar^3, ar^4\n\\]\n\nwhere \\(a\\) is the first term and \\(r\\) is the common ratio.\n\nSince we want each term to be a two-digit integer, we have the following constraints:\n\n\\[\n10 \\leq a < 100\n\\]\n\\[\n10 \\le"
438
  ],
439
  [
440
  "739bc9",
441
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
442
+ 199,
443
+ "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
444
+ "To solve the equation \\( \\vert \\vert x-1 \\vert -2 \\vert = \\frac{m}{100} \\) for the number of positive integers \\( m \\) that yield \\( 4 \\) distinct solutions, we first analyze the expression \\( \\vert \\vert x-1 \\vert -2 \\vert \\).\n\n1. **Break down the expression:**\n Let \\( y = \\vert x - 1 \\vert \\). Then, we rewrite the equation as"
445
  ],
446
  [
447
  "82e2a0",
448
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
449
+ 185,
450
+ "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
451
+ "Given that we want the probability that the highest roll of four 6-sided dice is exactly 5, we need to consider two things: that at least one die shows a 5 and no die shows a 6.\n\n### Step 1: Calculate the total number of outcomes when rolling four dice.\nEach die has 6 faces, so when we roll four dice, the total number of possible outcomes is:\n\n\\[\n6^4 = 1296.\n\\]\n\n### Step 2:"
452
  ],
453
  [
454
  "8ee6f3",
455
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
456
+ 320,
457
+ "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
458
+ "To solve the equation \n\n\\[\n((|x + y| - 10)^2 + (|x - y| - 10)^2)((|x| - 8)^2 + (|y| - 8)^2) = 0,\n\\]\n\nwe need to analyze the two factors separately and determine the resultant sets of points.\n\n### Step 1: Analyze the first factor\n\nThe expression \\((|x + y| - 10)^2 + (|x"
459
  ],
460
  [
461
  "bedda4",
462
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
463
+ 480,
464
+ "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
465
+ "To solve the problem, we first establish the coordinates of the points in the unit square \\(ABCD\\). \n\nLet the square \\(ABCD\\) have the following coordinates:\n- \\(A(0, 1)\\)\n- \\(B(1, 1)\\)\n- \\(C(1, 0)\\)\n- \\(D(0, 0)\\)\n\nNext, we define point \\(P\\) on segment \\(AB\\) such that \\(AP = \\frac{1"
466
  ],
467
  [
468
  "d7e9c9",
469
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
470
+ 199,
471
+ "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
472
+ "To find the function \\( f \\) satisfying the conditions \\( f(f(f(n))) = 8n - 7 \\) and \\( f(2n) = 2f(n) + 1 \\), let's start investigating each condition.\n\nFrom the first condition, we can substitute \\( n = 1 \\):\n\\[\nf(f(f(1))) = 8 \\cdot 1 - 7 = 1.\n\\]\nLet \\( a = f(1) \\)."
473
+ ]
474
+ ]
475
+ }
476
+ }
477
+ },
478
+ "error": null,
479
+ "input_metadata": null,
480
+ "meta": {
481
+ "inputs": {
482
+ "input": {
483
+ "name": "input",
484
+ "position": "left",
485
+ "type": {
486
+ "type": "<class 'inspect._empty'>"
487
+ }
488
+ }
489
+ },
490
+ "name": "View",
491
+ "outputs": {},
492
+ "params": {},
493
+ "type": "table_view"
494
+ },
495
+ "params": {},
496
+ "status": "done",
497
+ "title": "View",
498
+ "view": {
499
+ "dataframes": {
500
+ "df": {
501
+ "columns": [
502
+ "id",
503
+ "text",
504
+ "answer",
505
+ "prompt",
506
+ "response"
507
+ ],
508
+ "data": [
509
+ [
510
+ "229ee8",
511
+ "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
512
+ 52.0,
513
+ "Please give a correct solution for this: Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
514
+ " We start by finding the x-coordinates of points"
515
  ],
516
  [
517
  "246d26",
518
  "Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
519
+ 250.0,
520
+ "Please give a correct solution for this: Each of the three-digits numbers $111$ to $999$ is coloured blue or yellow in such a way that the sum of any two (not necessarily different) yellow numbers is equal to a blue number. What is the maximum possible number of yellow numbers there can be?",
521
+ " Let's consider the numbers in the form of"
522
  ],
523
  [
524
  "2fc4ad",
525
  "Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
526
+ 702.0,
527
+ "Please give a correct solution for this: Let the `sparkle' operation on positive integer $n$ consist of calculating the sum of the digits of $n$ and taking its factorial, e.g. the sparkle of 13 is $4! = 24$. A robot starts with a positive integer on a blackboard, then after each second for the rest of eternity, replaces the number on the board with its sparkle. For some `special' numbers, if they're the first number, then eventually every number that appears will be less than 6. How many such special numbers are there with at most 36 digits?",
528
+ " Let $S$ denote the set of all $"
529
  ],
530
  [
531
  "430b63",
532
  "What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
533
+ 800.0,
534
+ "Please give a correct solution for this: What is the minimum value of $5x^2+5y^2-8xy$ when $x$ and $y$ range over all real numbers such that $|x-2y| + |y-2x| = 40$?",
535
+ " We can rewrite the given equation as $|x-"
536
  ],
537
  [
538
  "5277ed",
539
  "There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
540
+ 211.0,
541
+ "Please give a correct solution for this: There exists a unique increasing geometric sequence of five 2-digit positive integers. What is their sum?",
542
+ " Let the five terms of the geometric sequence be $"
543
  ],
544
  [
545
  "739bc9",
546
  "For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
547
+ 199.0,
548
+ "Please give a correct solution for this: For how many positive integers $m$ does the equation $\\vert \\vert x-1 \\vert -2 \\vert=\\frac{m}{100}$ have $4$ distinct solutions?",
549
+ " Let's break down the problem.\n\n"
550
  ],
551
  [
552
  "82e2a0",
553
  "Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
554
+ 185.0,
555
+ "Please give a correct solution for this: Suppose that we roll four 6-sided fair dice with faces numbered 1 to~6. Let $a/b$ be the probability that the highest roll is a 5, where $a$ and $b$ are relatively prime positive integers. Find $a + b$.",
556
+ " The total number of outcomes when rolling four 6"
557
  ],
558
  [
559
  "8ee6f3",
560
  "The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
561
+ 320.0,
562
+ "Please give a correct solution for this: The points $\\left(x, y\\right)$ satisfying $((\\vert x + y \\vert - 10)^2 + ( \\vert x - y \\vert - 10)^2)((\\vert x \\vert - 8)^2 + ( \\vert y \\vert - 8)^2) = 0$ enclose a convex polygon. What is the area of this convex polygon?",
563
+ " We see that the given equation is equivalent to either"
564
  ],
565
  [
566
  "bedda4",
567
  "Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
568
+ 480.0,
569
+ "Please give a correct solution for this: Let $ABCD$ be a unit square. Let $P$ be the point on $AB$ such that $|AP| = 1/{20}$ and let $Q$ be the point on $AD$ such that $|AQ| = 1/{24}$. The lines $DP$ and $BQ$ divide the square into four regions. Find the ratio between the areas of the largest region and the smallest region.",
570
+ " [asy] size(7cm); pair A"
571
  ],
572
  [
573
  "d7e9c9",
574
  "A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
575
+ 199.0,
576
+ "Please give a correct solution for this: A function $f: \\mathbb N \\to \\mathbb N$ satisfies the following two conditions for all positive integers $n$:$f(f(f(n)))=8n-7$ and $f(2n)=2f(n)+1$. Calculate $f(100)$.",
577
+ " Let $P(n)$ be the assertion that"
578
+ ]
579
+ ]
580
+ }
581
+ }
582
+ }
583
+ },
584
+ "dragHandle": ".bg-primary",
585
+ "dragging": false,
586
+ "height": 497.0,
587
+ "id": "View 1",
588
+ "measured": {
589
+ "height": 497.0,
590
+ "width": 847.0
591
+ },
592
+ "parentId": null,
593
+ "position": {
594
+ "x": 918.8473117253317,
595
+ "y": -788.2139000963755
596
+ },
597
+ "type": "table_view",
598
+ "width": 847.0
599
+ },
600
+ {
601
+ "data": {
602
+ "display": {
603
+ "dataframes": {
604
+ "df": {
605
+ "columns": [
606
+ "id",
607
+ "text",
608
+ "answer"
609
+ ],
610
+ "data": [
611
+ [
612
+ "229ee8",
613
+ "Let $k, l > 0$ be parameters. The parabola $y = kx^2 - 2kx + l$ intersects the line $y = 4$ at two points $A$ and $B$. These points are distance 6 apart. What is the sum of the squares of the distances from $A$ and $B$ to the origin?",
614
+ 52
615
  ],
616
  [
617
  "246d26",
 
1363
  "__execution_delay": 0.0,
1364
  "collapsed": null,
1365
  "display": null,
1366
+ "error": null,
1367
  "input_metadata": null,
1368
  "meta": {
1369
  "inputs": {
 
1375
  }
1376
  }
1377
  },
1378
+ "name": "Branch",
1379
  "outputs": {
1380
+ "false": {
1381
+ "name": "false",
1382
+ "position": "right",
1383
+ "type": {
1384
+ "type": "None"
1385
+ }
1386
+ },
1387
+ "true": {
1388
+ "name": "true",
1389
  "position": "right",
1390
  "type": {
1391
  "type": "None"
 
1393
  }
1394
  },
1395
  "params": {
1396
+ "expression": {
1397
  "default": null,
1398
+ "name": "expression",
1399
  "type": {
1400
  "type": "<class 'str'>"
1401
  }
 
 
 
 
 
 
 
1402
  }
1403
  },
1404
  "type": "basic"
1405
  },
1406
  "params": {
1407
+ "expression": "yes"
 
 
1408
  },
1409
  "status": "done",
1410
+ "title": "Branch"
1411
  },
1412
  "dragHandle": ".bg-primary",
1413
+ "height": 200.0,
1414
+ "id": "Branch 1",
1415
  "position": {
1416
+ "x": 1960.130375806953,
1417
+ "y": 35.04769879986424
1418
  },
1419
  "type": "basic",
1420
+ "width": 200.0
1421
  },
1422
  {
1423
  "data": {
 
 
1424
  "display": null,
1425
  "error": null,
1426
  "input_metadata": null,
 
1460
  }
1461
  }
1462
  },
1463
+ "position": {
1464
+ "x": 485.0,
1465
+ "y": 196.0
1466
+ },
1467
  "type": "basic"
1468
  },
1469
  "params": {
1470
+ "accepted_regex": null,
1471
+ "max_tokens": 100.0
 
1472
  },
1473
  "status": "done",
1474
  "title": "Ask LLM"
1475
  },
1476
  "dragHandle": ".bg-primary",
1477
+ "height": 248.0,
1478
+ "id": "Ask LLM 2",
1479
  "position": {
1480
+ "x": 510.0,
1481
+ "y": -195.0
1482
  },
1483
  "type": "basic",
1484
+ "width": 251.0
1485
  },
1486
  {
1487
  "data": {
1488
  "__execution_delay": 0.0,
1489
  "collapsed": null,
1490
  "display": null,
1491
+ "error": "Error code: 400 - {'error': {'message': 'Unrecognized request argument supplied: regex', 'type': 'invalid_request_error', 'param': None, 'code': None}}",
1492
  "input_metadata": null,
1493
  "meta": {
1494
  "inputs": {
 
1500
  }
1501
  }
1502
  },
1503
+ "name": "Ask LLM",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504
  "outputs": {
1505
  "output": {
1506
  "name": "output",
 
1511
  }
1512
  },
1513
  "params": {
1514
+ "accepted_regex": {
1515
  "default": null,
1516
+ "name": "accepted_regex",
1517
  "type": {
1518
+ "type": "<class 'str'>"
1519
  }
1520
  },
1521
+ "max_tokens": {
1522
+ "default": 100.0,
1523
+ "name": "max_tokens",
1524
  "type": {
1525
+ "type": "<class 'int'>"
1526
  }
1527
  }
1528
  },
1529
  "position": {
1530
+ "x": 759.0,
1531
+ "y": 223.0
1532
  },
1533
  "type": "basic"
1534
  },
1535
  "params": {
1536
+ "accepted_regex": "yes|no",
1537
+ "max_tokens": 100.0
1538
  },
1539
  "status": "done",
1540
+ "title": "Ask LLM"
1541
  },
1542
  "dragHandle": ".bg-primary",
1543
+ "height": 303.0,
1544
+ "id": "Ask LLM 3",
1545
  "position": {
1546
+ "x": 1470.0,
1547
+ "y": -150.0
1548
  },
1549
  "type": "basic",
1550
+ "width": 309.0
1551
  }
1552
  ]
1553
  }
examples/{Bio demo.lynxkite.json → Bio Cypher demo.lynxkite.json} RENAMED
File without changes
examples/Image processing.lynxkite.json CHANGED
@@ -8,31 +8,31 @@
8
  "targetHandle": "image"
9
  },
10
  {
11
- "id": "xy-edge__Open image 1output-Flip verically 1image",
12
- "source": "Open image 1",
13
  "sourceHandle": "output",
14
- "target": "Flip verically 1",
15
  "targetHandle": "image"
16
  },
17
  {
18
- "id": "xy-edge__To grayscale 1output-View image 2image",
19
- "source": "To grayscale 1",
20
  "sourceHandle": "output",
21
- "target": "View image 2",
22
  "targetHandle": "image"
23
  },
24
  {
25
- "id": "xy-edge__Flip verically 1output-Blur 1image",
26
- "source": "Flip verically 1",
27
  "sourceHandle": "output",
28
- "target": "Blur 1",
29
  "targetHandle": "image"
30
  },
31
  {
32
- "id": "xy-edge__Blur 1output-To grayscale 1image",
33
- "source": "Blur 1",
34
  "sourceHandle": "output",
35
- "target": "To grayscale 1",
36
  "targetHandle": "image"
37
  }
38
  ],
@@ -120,51 +120,6 @@
120
  "type": "image",
121
  "width": 265.0
122
  },
123
- {
124
- "data": {
125
- "__execution_delay": null,
126
- "collapsed": true,
127
- "display": null,
128
- "error": null,
129
- "input_metadata": null,
130
- "meta": {
131
- "inputs": {
132
- "image": {
133
- "name": "image",
134
- "position": "left",
135
- "type": {
136
- "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
137
- }
138
- }
139
- },
140
- "name": "Flip verically",
141
- "outputs": {
142
- "output": {
143
- "name": "output",
144
- "position": "right",
145
- "type": {
146
- "type": "None"
147
- }
148
- }
149
- },
150
- "params": {},
151
- "type": "basic"
152
- },
153
- "params": {},
154
- "status": "done",
155
- "title": "Flip verically"
156
- },
157
- "dragHandle": ".bg-primary",
158
- "height": 200.0,
159
- "id": "Flip verically 1",
160
- "parentId": null,
161
- "position": {
162
- "x": 228.3853393986406,
163
- "y": 245.68255477059915
164
- },
165
- "type": "basic",
166
- "width": 200.0
167
- },
168
  {
169
  "data": {
170
  "display": "",
@@ -299,6 +254,50 @@
299
  },
300
  "type": "basic",
301
  "width": 200.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
  }
303
  ]
304
  }
 
8
  "targetHandle": "image"
9
  },
10
  {
11
+ "id": "xy-edge__To grayscale 1output-View image 2image",
12
+ "source": "To grayscale 1",
13
  "sourceHandle": "output",
14
+ "target": "View image 2",
15
  "targetHandle": "image"
16
  },
17
  {
18
+ "id": "xy-edge__Blur 1output-To grayscale 1image",
19
+ "source": "Blur 1",
20
  "sourceHandle": "output",
21
+ "target": "To grayscale 1",
22
  "targetHandle": "image"
23
  },
24
  {
25
+ "id": "Open image 1 Flip vertically 1",
26
+ "source": "Open image 1",
27
  "sourceHandle": "output",
28
+ "target": "Flip vertically 1",
29
  "targetHandle": "image"
30
  },
31
  {
32
+ "id": "Flip vertically 1 Blur 1",
33
+ "source": "Flip vertically 1",
34
  "sourceHandle": "output",
35
+ "target": "Blur 1",
36
  "targetHandle": "image"
37
  }
38
  ],
 
120
  "type": "image",
121
  "width": 265.0
122
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  {
124
  "data": {
125
  "display": "",
 
254
  },
255
  "type": "basic",
256
  "width": 200.0
257
+ },
258
+ {
259
+ "data": {
260
+ "__execution_delay": null,
261
+ "collapsed": true,
262
+ "display": null,
263
+ "error": null,
264
+ "input_metadata": null,
265
+ "meta": {
266
+ "inputs": {
267
+ "image": {
268
+ "name": "image",
269
+ "position": "left",
270
+ "type": {
271
+ "type": "<module 'PIL.Image' from '/media/nvme/darabos/lynxkite-2024/.venv/lib/python3.11/site-packages/PIL/Image.py'>"
272
+ }
273
+ }
274
+ },
275
+ "name": "Flip vertically",
276
+ "outputs": {
277
+ "output": {
278
+ "name": "output",
279
+ "position": "right",
280
+ "type": {
281
+ "type": "None"
282
+ }
283
+ }
284
+ },
285
+ "params": {},
286
+ "type": "basic"
287
+ },
288
+ "params": {},
289
+ "status": "done",
290
+ "title": "Flip vertically"
291
+ },
292
+ "dragHandle": ".bg-primary",
293
+ "height": 200.0,
294
+ "id": "Flip vertically 1",
295
+ "position": {
296
+ "x": 148.51544517498044,
297
+ "y": 288.98657171134255
298
+ },
299
+ "type": "basic",
300
+ "width": 200.0
301
  }
302
  ]
303
  }
examples/Model use.lynxkite.json CHANGED
@@ -421,7 +421,7 @@
421
  "type": "basic"
422
  },
423
  "params": {
424
- "model_workspace": "Model definition.lynxkite.json",
425
  "save_as": "model"
426
  },
427
  "status": "done",
 
421
  "type": "basic"
422
  },
423
  "params": {
424
+ "model_workspace": "Model definition",
425
  "save_as": "model"
426
  },
427
  "status": "done",
examples/PyTorch demo.lynxkite.json DELETED
@@ -1,623 +0,0 @@
1
- {
2
- "env": "PyTorch model",
3
- "nodes": [
4
- {
5
- "id": "Input: features 1",
6
- "type": "basic",
7
- "data": {
8
- "title": "Input: features",
9
- "params": {},
10
- "display": null,
11
- "error": null,
12
- "meta": {
13
- "name": "Input: features",
14
- "type": "basic",
15
- "outputs": {
16
- "x": {
17
- "position": "top",
18
- "name": "x",
19
- "type": {
20
- "type": "tensor"
21
- }
22
- }
23
- },
24
- "params": {},
25
- "inputs": {}
26
- },
27
- "collapsed": true,
28
- "__execution_delay": null
29
- },
30
- "position": {
31
- "x": -108.60604658638658,
32
- "y": 63.96065124378427
33
- },
34
- "width": 200.0,
35
- "height": 200.0,
36
- "parentId": null
37
- },
38
- {
39
- "id": "Input: graph edges 1",
40
- "type": "basic",
41
- "data": {
42
- "title": "Input: graph edges",
43
- "params": {},
44
- "display": null,
45
- "error": null,
46
- "__execution_delay": null,
47
- "collapsed": true,
48
- "meta": {
49
- "name": "Input: graph edges",
50
- "inputs": {},
51
- "params": {},
52
- "type": "basic",
53
- "outputs": {
54
- "edges": {
55
- "name": "edges",
56
- "type": {
57
- "type": "tensor"
58
- },
59
- "position": "top"
60
- }
61
- }
62
- }
63
- },
64
- "position": {
65
- "x": 180.7373888617958,
66
- "y": 58.54904654355781
67
- },
68
- "width": 200.0,
69
- "parentId": null,
70
- "height": 200.0
71
- },
72
- {
73
- "id": "Linear 1",
74
- "type": "basic",
75
- "data": {
76
- "title": "Linear",
77
- "params": {
78
- "output_dim": "same"
79
- },
80
- "display": null,
81
- "error": null,
82
- "meta": {
83
- "inputs": {
84
- "x": {
85
- "type": {
86
- "type": "tensor"
87
- },
88
- "position": "bottom",
89
- "name": "x"
90
- }
91
- },
92
- "type": "basic",
93
- "name": "Linear",
94
- "outputs": {
95
- "x": {
96
- "type": {
97
- "type": "tensor"
98
- },
99
- "position": "top",
100
- "name": "x"
101
- }
102
- },
103
- "params": {
104
- "output_dim": {
105
- "name": "output_dim",
106
- "type": {
107
- "type": "<class 'str'>"
108
- },
109
- "default": "same"
110
- }
111
- }
112
- }
113
- },
114
- "position": {
115
- "x": 78.37881963123723,
116
- "y": -528.3012263817914
117
- },
118
- "parentId": null,
119
- "width": 204.0,
120
- "height": 140.0
121
- },
122
- {
123
- "id": "Activation 1",
124
- "type": "basic",
125
- "data": {
126
- "title": "Activation",
127
- "params": {
128
- "type": "ReLU"
129
- },
130
- "display": null,
131
- "error": null,
132
- "meta": {
133
- "outputs": {
134
- "x": {
135
- "position": "top",
136
- "type": {
137
- "type": "tensor"
138
- },
139
- "name": "x"
140
- }
141
- },
142
- "name": "Activation",
143
- "type": "basic",
144
- "inputs": {
145
- "x": {
146
- "position": "bottom",
147
- "name": "x",
148
- "type": {
149
- "type": "tensor"
150
- }
151
- }
152
- },
153
- "params": {
154
- "type": {
155
- "default": "OptionsFor_type.ReLU",
156
- "name": "type",
157
- "type": {
158
- "enum": [
159
- "ReLU",
160
- "LeakyReLU",
161
- "Tanh",
162
- "Mish"
163
- ]
164
- }
165
- }
166
- }
167
- }
168
- },
169
- "position": {
170
- "x": 98.44658319023353,
171
- "y": -741.1411130550297
172
- },
173
- "height": 154.0,
174
- "parentId": null,
175
- "width": 173.0
176
- },
177
- {
178
- "id": "Dropout 1",
179
- "type": "basic",
180
- "data": {
181
- "title": "Dropout",
182
- "params": {
183
- "p": 0.5
184
- },
185
- "display": null,
186
- "error": null,
187
- "meta": {
188
- "type": "basic",
189
- "inputs": {
190
- "x": {
191
- "name": "x",
192
- "type": {
193
- "type": "tensor"
194
- },
195
- "position": "bottom"
196
- }
197
- },
198
- "name": "Dropout",
199
- "params": {
200
- "p": {
201
- "default": 0.5,
202
- "type": {
203
- "type": "<class 'float'>"
204
- },
205
- "name": "p"
206
- }
207
- },
208
- "outputs": {
209
- "x": {
210
- "position": "top",
211
- "name": "x",
212
- "type": {
213
- "type": "tensor"
214
- }
215
- }
216
- }
217
- }
218
- },
219
- "position": {
220
- "x": 73.61437458187964,
221
- "y": -929.9824215609918
222
- },
223
- "width": 207.0,
224
- "parentId": null,
225
- "height": 159.0
226
- },
227
- {
228
- "id": "Graph conv 1",
229
- "type": "basic",
230
- "data": {
231
- "title": "Graph conv",
232
- "params": {
233
- "type": "SAGEConv"
234
- },
235
- "display": null,
236
- "error": null,
237
- "meta": {
238
- "outputs": {
239
- "x": {
240
- "type": {
241
- "type": "tensor"
242
- },
243
- "name": "x",
244
- "position": "top"
245
- }
246
- },
247
- "type": "basic",
248
- "name": "Graph conv",
249
- "params": {
250
- "type": {
251
- "name": "type",
252
- "default": "OptionsFor_type.GCNConv",
253
- "type": {
254
- "enum": [
255
- "GCNConv",
256
- "GATConv",
257
- "GATv2Conv",
258
- "SAGEConv"
259
- ]
260
- }
261
- }
262
- },
263
- "inputs": {
264
- "x": {
265
- "type": {
266
- "type": "tensor"
267
- },
268
- "name": "x",
269
- "position": "bottom"
270
- },
271
- "edges": {
272
- "name": "edges",
273
- "type": {
274
- "type": "tensor"
275
- },
276
- "position": "bottom"
277
- }
278
- }
279
- }
280
- },
281
- "position": {
282
- "x": 64.08886242755246,
283
- "y": -269.43023573181557
284
- },
285
- "height": 200.0,
286
- "width": 200.0,
287
- "parentId": null
288
- },
289
- {
290
- "id": "Supervised loss 1",
291
- "type": "basic",
292
- "data": {
293
- "title": "Supervised loss",
294
- "params": {},
295
- "display": null,
296
- "error": null,
297
- "collapsed": true,
298
- "__execution_delay": null,
299
- "meta": {
300
- "type": "basic",
301
- "params": {},
302
- "name": "Supervised loss",
303
- "inputs": {
304
- "y": {
305
- "name": "y",
306
- "type": {
307
- "type": "tensor"
308
- },
309
- "position": "bottom"
310
- },
311
- "x": {
312
- "name": "x",
313
- "type": {
314
- "type": "tensor"
315
- },
316
- "position": "bottom"
317
- }
318
- },
319
- "outputs": {
320
- "loss": {
321
- "position": "top",
322
- "type": {
323
- "type": "tensor"
324
- },
325
- "name": "loss"
326
- }
327
- }
328
- }
329
- },
330
- "position": {
331
- "x": 110.53693593362718,
332
- "y": -1123.9976567905628
333
- },
334
- "parentId": null,
335
- "height": 80.0,
336
- "width": 204.0
337
- },
338
- {
339
- "id": "Input: label 1",
340
- "type": "basic",
341
- "data": {
342
- "title": "Input: label",
343
- "params": {},
344
- "display": null,
345
- "error": null,
346
- "collapsed": true,
347
- "__execution_delay": null,
348
- "meta": {
349
- "inputs": {},
350
- "outputs": {
351
- "y": {
352
- "type": {
353
- "type": "tensor"
354
- },
355
- "position": "top",
356
- "name": "y"
357
- }
358
- },
359
- "name": "Input: label",
360
- "type": "basic",
361
- "params": {}
362
- }
363
- },
364
- "position": {
365
- "x": 666.110498676668,
366
- "y": -898.6721561114967
367
- },
368
- "width": 200.0,
369
- "height": 73.0,
370
- "parentId": null
371
- },
372
- {
373
- "id": "Optimizer 1",
374
- "type": "basic",
375
- "data": {
376
- "title": "Optimizer",
377
- "params": {
378
- "lr": 0.001,
379
- "type": "AdamW"
380
- },
381
- "display": null,
382
- "error": null,
383
- "meta": {
384
- "name": "Optimizer",
385
- "outputs": {},
386
- "params": {
387
- "lr": {
388
- "default": 0.001,
389
- "name": "lr",
390
- "type": {
391
- "type": "<class 'float'>"
392
- }
393
- },
394
- "type": {
395
- "type": {
396
- "enum": [
397
- "AdamW",
398
- "Adafactor",
399
- "Adagrad",
400
- "SGD",
401
- "Lion",
402
- "Paged AdamW",
403
- "Galore AdamW"
404
- ]
405
- },
406
- "name": "type",
407
- "default": "OptionsFor_type.AdamW"
408
- }
409
- },
410
- "inputs": {
411
- "loss": {
412
- "type": {
413
- "type": "tensor"
414
- },
415
- "name": "loss",
416
- "position": "bottom"
417
- }
418
- },
419
- "type": "basic"
420
- }
421
- },
422
- "position": {
423
- "x": 115.25730958703494,
424
- "y": -1431.5320892753364
425
- },
426
- "width": 200.0,
427
- "height": 233.0,
428
- "parentId": null
429
- },
430
- {
431
- "id": "Repeat 3",
432
- "type": "basic",
433
- "data": {
434
- "title": "Repeat",
435
- "params": {
436
- "times": 1.0
437
- },
438
- "display": null,
439
- "error": null,
440
- "meta": {
441
- "type": "basic",
442
- "position": {
443
- "y": 340.0,
444
- "x": 371.0
445
- },
446
- "outputs": {
447
- "output": {
448
- "name": "output",
449
- "type": {
450
- "type": "tensor"
451
- },
452
- "position": "bottom"
453
- }
454
- },
455
- "name": "Repeat",
456
- "params": {
457
- "times": {
458
- "name": "times",
459
- "default": 1.0,
460
- "type": {
461
- "type": "<class 'int'>"
462
- }
463
- }
464
- },
465
- "inputs": {
466
- "input": {
467
- "type": {
468
- "type": "tensor"
469
- },
470
- "position": "top",
471
- "name": "input"
472
- }
473
- }
474
- }
475
- },
476
- "position": {
477
- "x": -245.1288628776232,
478
- "y": -276.90661040974317
479
- },
480
- "width": 200.0,
481
- "height": 200.0
482
- },
483
- {
484
- "id": "Repeat 1",
485
- "type": "basic",
486
- "data": {
487
- "title": "Repeat",
488
- "params": {
489
- "times": 1.0
490
- },
491
- "display": null,
492
- "error": null,
493
- "meta": {
494
- "outputs": {
495
- "output": {
496
- "position": "bottom",
497
- "type": {
498
- "type": "tensor"
499
- },
500
- "name": "output"
501
- }
502
- },
503
- "params": {
504
- "times": {
505
- "default": 1.0,
506
- "type": {
507
- "type": "<class 'int'>"
508
- },
509
- "name": "times"
510
- }
511
- },
512
- "position": {
513
- "x": 387.0,
514
- "y": 337.0
515
- },
516
- "type": "basic",
517
- "name": "Repeat",
518
- "inputs": {
519
- "input": {
520
- "name": "input",
521
- "position": "top",
522
- "type": {
523
- "type": "tensor"
524
- }
525
- }
526
- }
527
- }
528
- },
529
- "position": {
530
- "x": -258.0088683218416,
531
- "y": -737.3822225246788
532
- },
533
- "width": 200.0,
534
- "height": 200.0
535
- }
536
- ],
537
- "edges": [
538
- {
539
- "id": "xy-edge__Linear 1x-Activation 1x",
540
- "source": "Linear 1",
541
- "target": "Activation 1",
542
- "sourceHandle": "x",
543
- "targetHandle": "x"
544
- },
545
- {
546
- "id": "xy-edge__Activation 1x-Dropout 1x",
547
- "source": "Activation 1",
548
- "target": "Dropout 1",
549
- "sourceHandle": "x",
550
- "targetHandle": "x"
551
- },
552
- {
553
- "id": "xy-edge__Input: features 1x-Graph conv 1x",
554
- "source": "Input: features 1",
555
- "target": "Graph conv 1",
556
- "sourceHandle": "x",
557
- "targetHandle": "x"
558
- },
559
- {
560
- "id": "xy-edge__Input: graph edges 1edges-Graph conv 1edges",
561
- "source": "Input: graph edges 1",
562
- "target": "Graph conv 1",
563
- "sourceHandle": "edges",
564
- "targetHandle": "edges"
565
- },
566
- {
567
- "id": "xy-edge__Graph conv 1x-Linear 1x",
568
- "source": "Graph conv 1",
569
- "target": "Linear 1",
570
- "sourceHandle": "x",
571
- "targetHandle": "x"
572
- },
573
- {
574
- "id": "xy-edge__Input: label 1y-Supervised loss 1y",
575
- "source": "Input: label 1",
576
- "target": "Supervised loss 1",
577
- "sourceHandle": "y",
578
- "targetHandle": "y"
579
- },
580
- {
581
- "id": "xy-edge__Dropout 1x-Supervised loss 1x",
582
- "source": "Dropout 1",
583
- "target": "Supervised loss 1",
584
- "sourceHandle": "x",
585
- "targetHandle": "x"
586
- },
587
- {
588
- "id": "xy-edge__Supervised loss 1loss-Optimizer 1loss",
589
- "source": "Supervised loss 1",
590
- "target": "Optimizer 1",
591
- "sourceHandle": "loss",
592
- "targetHandle": "loss"
593
- },
594
- {
595
- "id": "Graph conv 1 Repeat 3",
596
- "source": "Graph conv 1",
597
- "target": "Repeat 3",
598
- "sourceHandle": "x",
599
- "targetHandle": "input"
600
- },
601
- {
602
- "id": "Repeat 3 Graph conv 1",
603
- "source": "Repeat 3",
604
- "target": "Graph conv 1",
605
- "sourceHandle": "output",
606
- "targetHandle": "x"
607
- },
608
- {
609
- "id": "Dropout 1 Repeat 1",
610
- "source": "Dropout 1",
611
- "target": "Repeat 1",
612
- "sourceHandle": "x",
613
- "targetHandle": "input"
614
- },
615
- {
616
- "id": "Repeat 1 Linear 1",
617
- "source": "Repeat 1",
618
- "target": "Linear 1",
619
- "sourceHandle": "output",
620
- "targetHandle": "x"
621
- }
622
- ]
623
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
examples/requirements.txt CHANGED
@@ -1 +1,2 @@
1
- Faker
 
 
1
+ # Example of a requirements.txt file. LynxKite will automatically install anything you put here.
2
+ faker
examples/word2vec.py CHANGED
@@ -1,5 +1,4 @@
1
  from lynxkite.core.ops import op
2
- import staticvectors
3
  import pandas as pd
4
 
5
  ENV = "LynxKite Graph Analytics"
@@ -7,6 +6,8 @@ ENV = "LynxKite Graph Analytics"
7
 
8
  @op(ENV, "Word2vec for the top 1000 words", slow=True)
9
  def word2vec_1000():
 
 
10
  model = staticvectors.StaticVectors("neuml/word2vec-quantized")
11
  df = pd.read_csv(
12
  "https://gist.githubusercontent.com/deekayen/4148741/raw/98d35708fa344717d8eee15d11987de6c8e26d7d/1-1000.txt",
 
1
  from lynxkite.core.ops import op
 
2
  import pandas as pd
3
 
4
  ENV = "LynxKite Graph Analytics"
 
6
 
7
  @op(ENV, "Word2vec for the top 1000 words", slow=True)
8
  def word2vec_1000():
9
+ import staticvectors
10
+
11
  model = staticvectors.StaticVectors("neuml/word2vec-quantized")
12
  df = pd.read_csv(
13
  "https://gist.githubusercontent.com/deekayen/4148741/raw/98d35708fa344717d8eee15d11987de6c8e26d7d/1-1000.txt",
lynxkite-app/src/lynxkite_app/main.py CHANGED
@@ -151,6 +151,14 @@ async def upload(req: fastapi.Request):
151
  return {"status": "ok"}
152
 
153
 
 
 
 
 
 
 
 
 
154
  class SPAStaticFiles(StaticFiles):
155
  """Route everything to index.html. https://stackoverflow.com/a/73552966/3318517"""
156
 
 
151
  return {"status": "ok"}
152
 
153
 
154
+ @app.post("/api/execute_workspace")
155
+ async def execute_workspace(name: str):
156
+ """Trigger and await the execution of a workspace."""
157
+ room = await crdt.ws_websocket_server.get_room(name)
158
+ ws_pyd = workspace.Workspace.model_validate(room.ws.to_py())
159
+ await crdt.execute(name, room.ws, ws_pyd)
160
+
161
+
162
  class SPAStaticFiles(StaticFiles):
163
  """Route everything to index.html. https://stackoverflow.com/a/73552966/3318517"""
164
 
lynxkite-app/web/src/Code.tsx CHANGED
@@ -71,13 +71,13 @@ export default function Code() {
71
  </a>
72
  <div className="ws-name">{path}</div>
73
  <div className="tools text-secondary">
74
- <a href="">
75
  <Atom />
76
- </a>
77
- <a href="">
78
  <Backspace />
79
- </a>
80
- <a href={`/dir/${parentDir}`}>
81
  <Close />
82
  </a>
83
  </div>
 
71
  </a>
72
  <div className="ws-name">{path}</div>
73
  <div className="tools text-secondary">
74
+ <button className="btn btn-link">
75
  <Atom />
76
+ </button>
77
+ <button className="btn btn-link">
78
  <Backspace />
79
+ </button>
80
+ <a href={`/dir/${parentDir}`} className="btn btn-link">
81
  <Close />
82
  </a>
83
  </div>
lynxkite-app/web/src/index.css CHANGED
@@ -54,7 +54,7 @@ body {
54
  display: flex;
55
  align-items: center;
56
 
57
- a {
58
  color: oklch(75% 0.13 230);
59
  font-size: 1.5em;
60
  padding: 0 10px;
 
54
  display: flex;
55
  align-items: center;
56
 
57
+ .btn {
58
  color: oklch(75% 0.13 230);
59
  font-size: 1.5em;
60
  padding: 0 10px;
lynxkite-app/web/src/workspace/Workspace.tsx CHANGED
@@ -26,6 +26,8 @@ import Atom from "~icons/tabler/atom.jsx";
26
  // @ts-ignore
27
  import Backspace from "~icons/tabler/backspace.jsx";
28
  // @ts-ignore
 
 
29
  import Close from "~icons/tabler/x.jsx";
30
  import type { Workspace, WorkspaceNode } from "../apiTypes.ts";
31
  import favicon from "../assets/favicon.ico";
@@ -181,12 +183,16 @@ function LynxKiteFlow() {
181
  useEffect(() => {
182
  const handleKeyDown = (event: KeyboardEvent) => {
183
  // Show the node search dialog on "/".
184
- if (event.key === "/" && !nodeSearchSettings && !isTypingInFormElement()) {
 
185
  event.preventDefault();
186
  setNodeSearchSettings({
187
  pos: { x: 100, y: 100 },
188
  boxes: catalog.data![state.workspace.env!],
189
  });
 
 
 
190
  }
191
  };
192
  // TODO: Switch to keydown once https://github.com/xyflow/xyflow/pull/5055 is merged.
@@ -318,6 +324,12 @@ function LynxKiteFlow() {
318
  setMessage("File upload failed.");
319
  }
320
  }
 
 
 
 
 
 
321
  return (
322
  <div className="workspace">
323
  <div className="top-bar bg-neutral">
@@ -334,13 +346,16 @@ function LynxKiteFlow() {
334
  }}
335
  />
336
  <div className="tools text-secondary">
337
- <a href="">
338
  <Atom />
339
- </a>
340
- <a href="">
341
  <Backspace />
342
- </a>
343
- <a href={`/dir/${parentDir}`}>
 
 
 
344
  <Close />
345
  </a>
346
  </div>
 
26
  // @ts-ignore
27
  import Backspace from "~icons/tabler/backspace.jsx";
28
  // @ts-ignore
29
+ import Restart from "~icons/tabler/rotate-clockwise.jsx";
30
+ // @ts-ignore
31
  import Close from "~icons/tabler/x.jsx";
32
  import type { Workspace, WorkspaceNode } from "../apiTypes.ts";
33
  import favicon from "../assets/favicon.ico";
 
183
  useEffect(() => {
184
  const handleKeyDown = (event: KeyboardEvent) => {
185
  // Show the node search dialog on "/".
186
+ if (nodeSearchSettings || isTypingInFormElement()) return;
187
+ if (event.key === "/") {
188
  event.preventDefault();
189
  setNodeSearchSettings({
190
  pos: { x: 100, y: 100 },
191
  boxes: catalog.data![state.workspace.env!],
192
  });
193
+ } else if (event.key === "r") {
194
+ event.preventDefault();
195
+ executeWorkspace();
196
  }
197
  };
198
  // TODO: Switch to keydown once https://github.com/xyflow/xyflow/pull/5055 is merged.
 
324
  setMessage("File upload failed.");
325
  }
326
  }
327
+ async function executeWorkspace() {
328
+ const response = await axios.post(`/api/execute_workspace?name=${path}`);
329
+ if (response.status !== 200) {
330
+ setMessage("Workspace execution failed.");
331
+ }
332
+ }
333
  return (
334
  <div className="workspace">
335
  <div className="top-bar bg-neutral">
 
346
  }}
347
  />
348
  <div className="tools text-secondary">
349
+ <button className="btn btn-link">
350
  <Atom />
351
+ </button>
352
+ <button className="btn btn-link">
353
  <Backspace />
354
+ </button>
355
+ <button className="btn btn-link" onClick={executeWorkspace}>
356
+ <Restart />
357
+ </button>
358
+ <a className="btn btn-link" href={`/dir/${parentDir}`}>
359
  <Close />
360
  </a>
361
  </div>
lynxkite-app/web/tests/examples.spec.ts CHANGED
@@ -2,44 +2,21 @@
2
  import { expect, test } from "@playwright/test";
3
  import { Workspace } from "./lynxkite";
4
 
5
- test("LynxKite Graph Analytics example", async ({ page }) => {
6
- const ws = await Workspace.open(page, "NetworkX demo");
7
- await ws.expectErrorFree(process.env.CI ? 2000 : 1000);
8
- });
9
-
10
- test("Bio example", async ({ page }) => {
11
- const ws = await Workspace.open(page, "Bio demo");
12
- await ws.expectErrorFree();
13
- });
14
-
15
- test("Pytorch example", async ({ page }) => {
16
- const ws = await Workspace.open(page, "PyTorch demo");
17
- await ws.expectErrorFree();
18
- });
19
-
20
- test("AIMO example", async ({ page }) => {
21
- const ws = await Workspace.open(page, "AIMO");
22
- await ws.expectErrorFree();
23
- });
24
-
25
- test("LynxScribe example", async ({ page }) => {
26
- // Fails because of missing OPENAI_API_KEY
27
- const ws = await Workspace.open(page, "LynxScribe demo");
28
- await ws.expectErrorFree();
29
- });
30
-
31
- test("Graph RAG", async ({ page }) => {
32
- // Fails due to some issue with ChromaDB
33
- const ws = await Workspace.open(page, "Graph RAG");
34
- await ws.expectErrorFree(process.env.CI ? 2000 : 500);
35
- });
36
-
37
- test("Airlines demo", async ({ page }) => {
38
- const ws = await Workspace.open(page, "Airlines demo");
39
- await ws.expectErrorFree(process.env.CI ? 10000 : 500);
40
- });
41
-
42
- test("Pillow example", async ({ page }) => {
43
- const ws = await Workspace.open(page, "Image processing");
44
- await ws.expectErrorFree();
45
- });
 
2
  import { expect, test } from "@playwright/test";
3
  import { Workspace } from "./lynxkite";
4
 
5
+ const WORKSPACES = [
6
+ // "AIMO",
7
+ "Airlines demo",
8
+ "Bio Cypher demo",
9
+ // "Graph RAG",
10
+ "Image processing",
11
+ // "LynxScribe demo",
12
+ "NetworkX demo",
13
+ "Model use",
14
+ ];
15
+
16
+ for (const name of WORKSPACES) {
17
+ test(name, async ({ page }) => {
18
+ const ws = await Workspace.open(page, name);
19
+ await ws.execute();
20
+ await ws.expectErrorFree();
21
+ });
22
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
lynxkite-app/web/tests/lynxkite.ts CHANGED
@@ -144,8 +144,14 @@ export class Workspace {
144
  await this.page.mouse.up();
145
  }
146
 
 
 
 
 
 
 
147
  async expectErrorFree(executionWaitTime?) {
148
- await expect(this.getBoxes().locator(".error").first()).not.toBeVisible();
149
  }
150
 
151
  async close() {
 
144
  await this.page.mouse.up();
145
  }
146
 
147
+ async execute() {
148
+ const request = this.page.waitForResponse(/api[/]execute_workspace/);
149
+ await this.page.keyboard.press("r");
150
+ await request;
151
+ }
152
+
153
  async expectErrorFree(executionWaitTime?) {
154
+ await expect(this.getBoxes().locator("text=⚠️").first()).not.toBeVisible();
155
  }
156
 
157
  async close() {
lynxkite-core/src/lynxkite/core/ops.py CHANGED
@@ -344,29 +344,27 @@ def load_user_scripts(workspace: str):
344
  assert path.is_relative_to(cwd), "Provided workspace path is invalid"
345
  for p in path.parents:
346
  print("checking user scripts in", p)
347
- for f in p.glob("*.py"):
348
- try:
349
- run_user_script(f)
350
- except Exception:
351
- traceback.print_exc()
352
  req = p / "requirements.txt"
353
  if req.exists():
354
  try:
355
  install_requirements(req)
356
  except Exception:
357
  traceback.print_exc()
 
 
 
 
 
358
  if p == cwd:
359
  break
360
 
361
 
362
  def install_requirements(req: pathlib.Path):
363
- cmd = ["uv", "pip", "install", "-r", str(req)]
364
- print(f"Running {' '.join(cmd)}")
365
  subprocess.check_call(cmd)
366
 
367
 
368
  def run_user_script(script_path: pathlib.Path):
369
- print(f"Running {script_path}...")
370
  spec = importlib.util.spec_from_file_location(script_path.stem, str(script_path))
371
  module = importlib.util.module_from_spec(spec)
372
  spec.loader.exec_module(module)
 
344
  assert path.is_relative_to(cwd), "Provided workspace path is invalid"
345
  for p in path.parents:
346
  print("checking user scripts in", p)
 
 
 
 
 
347
  req = p / "requirements.txt"
348
  if req.exists():
349
  try:
350
  install_requirements(req)
351
  except Exception:
352
  traceback.print_exc()
353
+ for f in p.glob("*.py"):
354
+ try:
355
+ run_user_script(f)
356
+ except Exception:
357
+ traceback.print_exc()
358
  if p == cwd:
359
  break
360
 
361
 
362
  def install_requirements(req: pathlib.Path):
363
+ cmd = ["uv", "pip", "install", "-q", "-r", str(req)]
 
364
  subprocess.check_call(cmd)
365
 
366
 
367
  def run_user_script(script_path: pathlib.Path):
 
368
  spec = importlib.util.spec_from_file_location(script_path.stem, str(script_path))
369
  module = importlib.util.module_from_spec(spec)
370
  spec.loader.exec_module(module)
lynxkite-graph-analytics/src/lynxkite_graph_analytics/networkx_ops.py CHANGED
@@ -152,11 +152,11 @@ def types_from_doc(doc: str) -> dict[str, type]:
152
 
153
  def wrapped(name: str, func):
154
  @functools.wraps(func)
155
- def wrapper(*args, **kwargs):
156
  for k, v in kwargs.items():
157
  if v == "None":
158
  kwargs[k] = None
159
- res = func(*args, **kwargs)
160
  # Figure out what the returned value is.
161
  if isinstance(res, nx.Graph):
162
  return res
 
152
 
153
  def wrapped(name: str, func):
154
  @functools.wraps(func)
155
+ async def wrapper(*args, **kwargs):
156
  for k, v in kwargs.items():
157
  if v == "None":
158
  kwargs[k] = None
159
+ res = await ops.slow(func)(*args, **kwargs)
160
  # Figure out what the returned value is.
161
  if isinstance(res, nx.Graph):
162
  return res
lynxkite-lynxscribe/src/lynxkite_lynxscribe/llm_ops.py CHANGED
@@ -125,7 +125,7 @@ def create_prompt(input, *, save_as="prompt", template: ops.LongStr):
125
  return {**input, save_as: prompt}
126
 
127
 
128
- @op("Ask LLM")
129
  def ask_llm(input, *, accepted_regex: str = None, max_tokens: int = 100):
130
  assert "prompt" in input, "Please create the prompt first."
131
  options = {}
 
125
  return {**input, save_as: prompt}
126
 
127
 
128
+ @op("Ask LLM", slow=True)
129
  def ask_llm(input, *, accepted_regex: str = None, max_tokens: int = 100):
130
  assert "prompt" in input, "Please create the prompt first."
131
  options = {}