mszel commited on
Commit
f064e87
·
1 Parent(s): 460e81e

uploading after new pre-commit rules

Browse files
lynxkite-lynxscribe/src/lynxkite_lynxscribe/lynxscribe_ops.py CHANGED
@@ -80,9 +80,7 @@ def cloud_file_loader(
80
 
81
  bucket = client.bucket(bucket_name)
82
  blobs = bucket.list_blobs(prefix=prefix)
83
- file_urls = [
84
- blob.public_url for blob in blobs if blob.name.endswith(accepted_file_types)
85
- ]
86
  return {"file_urls": file_urls}
87
  else:
88
  raise ValueError(f"Cloud provider '{cloud_provider}' is not supported.")
@@ -172,25 +170,20 @@ async def ls_image_describer(
172
 
173
  # creating the prompt objects
174
  ch_prompt_list = [
175
- ChatCompletionPrompt(model=llm_visual_model, messages=prompt)
176
- for prompt in prompt_list
177
  ]
178
 
179
  # get the image descriptions
180
- tasks = [
181
- llm.acreate_completion(completion_prompt=_prompt) for _prompt in ch_prompt_list
182
- ]
183
  out_completions = await asyncio.gather(*tasks)
184
  results = [
185
- dictionary_corrector(result.choices[0].message.content)
186
- for result in out_completions
187
  ]
188
 
189
  # getting the image descriptions (list of dictionaries {image_url: URL, description: description})
190
  # TODO: some result class could be a better idea (will be developed in LynxScribe)
191
  image_descriptions = [
192
- {"image_url": image_urls[i], "description": results[i]}
193
- for i in range(len(image_urls))
194
  ]
195
 
196
  return {"image_descriptions": image_descriptions}
@@ -232,13 +225,9 @@ async def ls_image_rag_builder(
232
  # b) getting the vector store
233
  # TODO: vdb_provider_name should be ENUM, and other parameters should appear accordingly
234
  if vdb_provider_name == "chromadb":
235
- vector_store = get_vector_store(
236
- name=vdb_provider_name, collection_name=vdb_collection_name
237
- )
238
  elif vdb_provider_name == "faiss":
239
- vector_store = get_vector_store(
240
- name=vdb_provider_name, num_dimensions=vdb_num_dimensions
241
- )
242
  else:
243
  raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
244
 
@@ -334,9 +323,7 @@ async def search_context(rag_graph, text, *, top_k=3):
334
  image_url = emb_sim.embedding.metadata["image_url"]
335
  score = emb_sim.score
336
  description = emb_sim.embedding.document
337
- result_list.append(
338
- {"image_url": image_url, "score": score, "description": description}
339
- )
340
 
341
  return {"embedding_similarities": result_list}
342
 
@@ -381,13 +368,9 @@ def ls_text_rag_loader(
381
 
382
  # getting the vector store
383
  if vdb_provider_name == "chromadb":
384
- vector_store = get_vector_store(
385
- name=vdb_provider_name, collection_name=vdb_collection_name
386
- )
387
  elif vdb_provider_name == "faiss":
388
- vector_store = get_vector_store(
389
- name=vdb_provider_name, num_dimensions=vdb_num_dimensions
390
- )
391
  else:
392
  raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
393
 
 
80
 
81
  bucket = client.bucket(bucket_name)
82
  blobs = bucket.list_blobs(prefix=prefix)
83
+ file_urls = [blob.public_url for blob in blobs if blob.name.endswith(accepted_file_types)]
 
 
84
  return {"file_urls": file_urls}
85
  else:
86
  raise ValueError(f"Cloud provider '{cloud_provider}' is not supported.")
 
170
 
171
  # creating the prompt objects
172
  ch_prompt_list = [
173
+ ChatCompletionPrompt(model=llm_visual_model, messages=prompt) for prompt in prompt_list
 
174
  ]
175
 
176
  # get the image descriptions
177
+ tasks = [llm.acreate_completion(completion_prompt=_prompt) for _prompt in ch_prompt_list]
 
 
178
  out_completions = await asyncio.gather(*tasks)
179
  results = [
180
+ dictionary_corrector(result.choices[0].message.content) for result in out_completions
 
181
  ]
182
 
183
  # getting the image descriptions (list of dictionaries {image_url: URL, description: description})
184
  # TODO: some result class could be a better idea (will be developed in LynxScribe)
185
  image_descriptions = [
186
+ {"image_url": image_urls[i], "description": results[i]} for i in range(len(image_urls))
 
187
  ]
188
 
189
  return {"image_descriptions": image_descriptions}
 
225
  # b) getting the vector store
226
  # TODO: vdb_provider_name should be ENUM, and other parameters should appear accordingly
227
  if vdb_provider_name == "chromadb":
228
+ vector_store = get_vector_store(name=vdb_provider_name, collection_name=vdb_collection_name)
 
 
229
  elif vdb_provider_name == "faiss":
230
+ vector_store = get_vector_store(name=vdb_provider_name, num_dimensions=vdb_num_dimensions)
 
 
231
  else:
232
  raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
233
 
 
323
  image_url = emb_sim.embedding.metadata["image_url"]
324
  score = emb_sim.score
325
  description = emb_sim.embedding.document
326
+ result_list.append({"image_url": image_url, "score": score, "description": description})
 
 
327
 
328
  return {"embedding_similarities": result_list}
329
 
 
368
 
369
  # getting the vector store
370
  if vdb_provider_name == "chromadb":
371
+ vector_store = get_vector_store(name=vdb_provider_name, collection_name=vdb_collection_name)
 
 
372
  elif vdb_provider_name == "faiss":
373
+ vector_store = get_vector_store(name=vdb_provider_name, num_dimensions=vdb_num_dimensions)
 
 
374
  else:
375
  raise ValueError(f"Vector store name '{vdb_provider_name}' is not supported.")
376