"""Graph analytics executor and data types.""" import inspect import os from lynxkite.core import ops, workspace import dataclasses import functools import networkx as nx import pandas as pd import polars as pl import traceback import typing ENV = "LynxKite Graph Analytics" @dataclasses.dataclass class RelationDefinition: """Defines a set of edges.""" df: str # The DataFrame that contains the edges. source_column: str # The column in the edge DataFrame that contains the source node ID. target_column: str # The column in the edge DataFrame that contains the target node ID. source_table: str # The DataFrame that contains the source nodes. target_table: str # The DataFrame that contains the target nodes. source_key: str # The column in the source table that contains the node ID. target_key: str # The column in the target table that contains the node ID. name: str | None = None # Descriptive name for the relation. @dataclasses.dataclass class Bundle: """A collection of DataFrames and other data. Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data. It can also carry other data, such as a trained model. """ dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict) relations: list[RelationDefinition] = dataclasses.field(default_factory=list) other: dict[str, typing.Any] = dataclasses.field(default_factory=dict) @classmethod def from_nx(cls, graph: nx.Graph): edges = nx.to_pandas_edgelist(graph) d = dict(graph.nodes(data=True)) nodes = pd.DataFrame(d.values(), index=d.keys()) nodes["id"] = nodes.index if "index" in nodes.columns: nodes.drop(columns=["index"], inplace=True) return cls( dfs={"edges": edges, "nodes": nodes}, relations=[ RelationDefinition( df="edges", source_column="source", target_column="target", source_table="nodes", target_table="nodes", source_key="id", target_key="id", ) ], ) @classmethod def from_df(cls, df: pd.DataFrame): return cls(dfs={"df": df}) def to_nx(self): # TODO: Use relations. graph = nx.DiGraph() if "nodes" in self.dfs: df = self.dfs["nodes"] if df.index.name != "id": df = df.set_index("id") graph.add_nodes_from(df.to_dict("index").items()) if "edges" in self.dfs: edges = self.dfs["edges"] graph.add_edges_from( [ ( e["source"], e["target"], {k: e[k] for k in edges.columns if k not in ["source", "target"]}, ) for e in edges.to_records() ] ) return graph def copy(self): """Returns a medium depth copy of the bundle. The Bundle is completely new, but the DataFrames and RelationDefinitions are shared.""" return Bundle( dfs=dict(self.dfs), relations=list(self.relations), other=dict(self.other), ) def to_dict(self, limit: int = 100): """JSON-serializable representation of the bundle, including some data.""" return { "dataframes": { name: { "columns": [str(c) for c in df.columns], "data": df_for_frontend(df, limit).values.tolist(), } for name, df in self.dfs.items() }, "relations": [dataclasses.asdict(relation) for relation in self.relations], "other": {k: str(v) for k, v in self.other.items()}, } def metadata(self): """JSON-serializable information about the bundle, metadata only.""" return { "dataframes": { name: { "columns": sorted(str(c) for c in df.columns), } for name, df in self.dfs.items() }, "relations": [dataclasses.asdict(relation) for relation in self.relations], "other": {k: getattr(v, "metadata", lambda: {})() for k, v in self.other.items()}, } def nx_node_attribute_func(name): """Decorator for wrapping a function that adds a NetworkX node attribute.""" def decorator(func): @functools.wraps(func) def wrapper(graph: nx.Graph, **kwargs): graph = graph.copy() attr = func(graph, **kwargs) nx.set_node_attributes(graph, attr, name) return graph return wrapper return decorator def disambiguate_edges(ws: workspace.Workspace): """If an input plug is connected to multiple edges, keep only the last edge.""" catalog = ops.CATALOGS[ws.env] nodes = {node.id: node for node in ws.nodes} seen = set() for edge in reversed(ws.edges): dst_node = nodes[edge.target] op = catalog.get(dst_node.data.title) if op.get_input(edge.targetHandle).type == list[Bundle]: # Takes multiple bundles as an input. No need to disambiguate. continue if (edge.target, edge.targetHandle) in seen: i = ws.edges.index(edge) del ws.edges[i] if hasattr(ws, "_crdt"): del ws._crdt["edges"][i] seen.add((edge.target, edge.targetHandle)) # Outputs are tracked by node ID and output ID. Outputs = dict[tuple[str, str], typing.Any] @ops.register_executor(ENV) async def execute(ws: workspace.Workspace): catalog = ops.CATALOGS[ws.env] disambiguate_edges(ws) outputs: Outputs = {} nodes = {node.id: node for node in ws.nodes} todo = set(nodes.keys()) progress = True while progress: progress = False for id in list(todo): node = nodes[id] inputs_done = [ (edge.source, edge.sourceHandle) in outputs for edge in ws.edges if edge.target == id ] if all(inputs_done): # All inputs for this node are ready, we can compute the output. todo.remove(id) progress = True await _execute_node(node, ws, catalog, outputs) return outputs async def await_if_needed(obj): if inspect.isawaitable(obj): obj = await obj return obj async def _execute_node( node: workspace.WorkspaceNode, ws: workspace.Workspace, catalog: ops.Catalog, outputs: Outputs ): params = {**node.data.params} op = catalog.get(node.data.title) if not op: node.publish_error("Operation not found in catalog") return node.publish_started() # TODO: Handle multi-inputs. input_map = { edge.targetHandle: outputs[edge.source, edge.sourceHandle] for edge in ws.edges if edge.target == node.id } # Convert inputs types to match operation signature. try: inputs = [] missing = [] for p in op.inputs: if p.name not in input_map: opt_type = ops.get_optional_type(p.type) if opt_type is not None: inputs.append(None) else: missing.append(p.name) continue x = input_map[p.name] if p.type == nx.Graph and isinstance(x, Bundle): x = x.to_nx() elif p.type == Bundle and isinstance(x, nx.Graph): x = Bundle.from_nx(x) elif p.type == Bundle and isinstance(x, pd.DataFrame): x = Bundle.from_df(x) inputs.append(x) except Exception as e: if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"): traceback.print_exc() node.publish_error(e) return if missing: node.publish_error(f"Missing input: {', '.join(missing)}") return # Execute op. try: result = op(*inputs, **params) result.output = await await_if_needed(result.output) result.display = await await_if_needed(result.display) except Exception as e: if not os.environ.get("LYNXKITE_SUPPRESS_OP_ERRORS"): traceback.print_exc() result = ops.Result(error=str(e)) result.input_metadata = [_get_metadata(i) for i in inputs] if isinstance(result.output, dict): for k, v in result.output.items(): outputs[node.id, k] = v elif result.output is not None: [k] = op.outputs outputs[node.id, k.name] = result.output node.publish_result(result) def _get_metadata(x): if hasattr(x, "metadata"): return x.metadata() return {} def df_for_frontend(df: pd.DataFrame, limit: int) -> pd.DataFrame: """Returns a DataFrame with values that are safe to send to the frontend.""" df = df[:limit] if isinstance(df, pl.LazyFrame): df = df.collect() if isinstance(df, pl.DataFrame): df = df.to_pandas() # Convert non-numeric columns to strings. for c in df.columns: if not pd.api.types.is_numeric_dtype(df[c]): df[c] = df[c].astype(str) return df