Spaces:
Runtime error
Runtime error
Epsilon617
commited on
Commit
·
826be26
1
Parent(s):
5247bff
add model inference codes
Browse files- __pycache__/app.cpython-310.pyc +0 -0
- app.py +25 -8
- requirements.txt +88 -0
__pycache__/app.cpython-310.pyc
CHANGED
Binary files a/__pycache__/app.cpython-310.pyc and b/__pycache__/app.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -5,9 +5,21 @@ import torch
|
|
5 |
from torch import nn
|
6 |
import torchaudio
|
7 |
import torchaudio.transforms as T
|
8 |
-
|
9 |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
|
12 |
gr.inputs.Audio(source="microphone",optional=True, type="filepath"),
|
13 |
]
|
@@ -17,8 +29,8 @@ title = "Output the tags of a (music) audio"
|
|
17 |
description = "An example of using MERT-95M-public to conduct music tagging."
|
18 |
article = ""
|
19 |
audio_examples = [
|
20 |
-
["input/example-1.wav"],
|
21 |
-
["input/example-2.wav"],
|
22 |
]
|
23 |
|
24 |
# Load the model
|
@@ -26,13 +38,14 @@ model = AutoModel.from_pretrained("m-a-p/MERT-v0-public", trust_remote_code=True
|
|
26 |
# loading the corresponding preprocessor config
|
27 |
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
28 |
|
|
|
|
|
29 |
|
30 |
def convert_audio(inputs, microphone):
|
31 |
if (microphone is not None):
|
32 |
inputs = microphone
|
33 |
|
34 |
waveform, sample_rate = torchaudio.load(inputs)
|
35 |
-
|
36 |
|
37 |
resample_rate = processor.sampling_rate
|
38 |
|
@@ -42,15 +55,19 @@ def convert_audio(inputs, microphone):
|
|
42 |
resampler = T.Resample(sample_rate, resample_rate)
|
43 |
waveform = resampler(waveform)
|
44 |
|
45 |
-
|
|
|
|
|
46 |
with torch.no_grad():
|
47 |
-
|
48 |
|
49 |
# take a look at the output shape, there are 13 layers of representation
|
50 |
# each layer performs differently in different downstream tasks, you should choose empirically
|
51 |
-
all_layer_hidden_states = torch.stack(
|
52 |
# print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
|
53 |
-
|
|
|
|
|
54 |
|
55 |
|
56 |
# iface = gr.Interface(fn=convert_audio, inputs="audio", outputs="text")
|
|
|
5 |
from torch import nn
|
6 |
import torchaudio
|
7 |
import torchaudio.transforms as T
|
8 |
+
import logging
|
9 |
# input cr: https://huggingface.co/spaces/thealphhamerc/audio-to-text/blob/main/app.py
|
10 |
|
11 |
+
|
12 |
+
logger = logging.getLogger("whisper-jax-app")
|
13 |
+
logger.setLevel(logging.INFO)
|
14 |
+
ch = logging.StreamHandler()
|
15 |
+
ch.setLevel(logging.INFO)
|
16 |
+
formatter = logging.Formatter(
|
17 |
+
"%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S")
|
18 |
+
ch.setFormatter(formatter)
|
19 |
+
logger.addHandler(ch)
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
inputs = [gr.components.Audio(type="filepath", label="Add music audio file"),
|
24 |
gr.inputs.Audio(source="microphone",optional=True, type="filepath"),
|
25 |
]
|
|
|
29 |
description = "An example of using MERT-95M-public to conduct music tagging."
|
30 |
article = ""
|
31 |
audio_examples = [
|
32 |
+
# ["input/example-1.wav"],
|
33 |
+
# ["input/example-2.wav"],
|
34 |
]
|
35 |
|
36 |
# Load the model
|
|
|
38 |
# loading the corresponding preprocessor config
|
39 |
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v0-public",trust_remote_code=True)
|
40 |
|
41 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
42 |
+
model.to(device)
|
43 |
|
44 |
def convert_audio(inputs, microphone):
|
45 |
if (microphone is not None):
|
46 |
inputs = microphone
|
47 |
|
48 |
waveform, sample_rate = torchaudio.load(inputs)
|
|
|
49 |
|
50 |
resample_rate = processor.sampling_rate
|
51 |
|
|
|
55 |
resampler = T.Resample(sample_rate, resample_rate)
|
56 |
waveform = resampler(waveform)
|
57 |
|
58 |
+
waveform = waveform.view(-1,) # make it (n_sample, )
|
59 |
+
model_inputs = processor(waveform, sampling_rate=resample_rate, return_tensors="pt")
|
60 |
+
model_inputs.to(device)
|
61 |
with torch.no_grad():
|
62 |
+
model_outputs = model(**model_inputs, output_hidden_states=True)
|
63 |
|
64 |
# take a look at the output shape, there are 13 layers of representation
|
65 |
# each layer performs differently in different downstream tasks, you should choose empirically
|
66 |
+
all_layer_hidden_states = torch.stack(model_outputs.hidden_states).squeeze()
|
67 |
# print(all_layer_hidden_states.shape) # [13 layer, Time steps, 768 feature_dim]
|
68 |
+
# logger.warning(all_layer_hidden_states.shape)
|
69 |
+
|
70 |
+
return device + " :" + str(all_layer_hidden_states.shape)
|
71 |
|
72 |
|
73 |
# iface = gr.Interface(fn=convert_audio, inputs="audio", outputs="text")
|
requirements.txt
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.1.0
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.0.0
|
5 |
+
anyio==3.6.2
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==23.1.0
|
8 |
+
certifi==2023.5.7
|
9 |
+
charset-normalizer==3.1.0
|
10 |
+
click==8.1.3
|
11 |
+
cmake==3.26.3
|
12 |
+
contourpy==1.0.7
|
13 |
+
cycler==0.11.0
|
14 |
+
fastapi==0.95.2
|
15 |
+
ffmpy==0.3.0
|
16 |
+
filelock==3.12.0
|
17 |
+
fonttools==4.39.4
|
18 |
+
frozenlist==1.3.3
|
19 |
+
fsspec==2023.5.0
|
20 |
+
gradio==3.31.0
|
21 |
+
gradio_client==0.2.5
|
22 |
+
h11==0.14.0
|
23 |
+
httpcore==0.17.1
|
24 |
+
httpx==0.24.0
|
25 |
+
huggingface-hub==0.14.1
|
26 |
+
idna==3.4
|
27 |
+
Jinja2==3.1.2
|
28 |
+
jsonschema==4.17.3
|
29 |
+
kiwisolver==1.4.4
|
30 |
+
linkify-it-py==2.0.2
|
31 |
+
lit==16.0.5
|
32 |
+
markdown-it-py==2.2.0
|
33 |
+
MarkupSafe==2.1.2
|
34 |
+
matplotlib==3.7.1
|
35 |
+
mdit-py-plugins==0.3.3
|
36 |
+
mdurl==0.1.2
|
37 |
+
mpmath==1.3.0
|
38 |
+
multidict==6.0.4
|
39 |
+
networkx==3.1
|
40 |
+
nnAudio==0.3.2
|
41 |
+
numpy==1.24.3
|
42 |
+
nvidia-cublas-cu11==11.10.3.66
|
43 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
44 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
45 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
46 |
+
nvidia-cudnn-cu11==8.5.0.96
|
47 |
+
nvidia-cufft-cu11==10.9.0.58
|
48 |
+
nvidia-curand-cu11==10.2.10.91
|
49 |
+
nvidia-cusolver-cu11==11.4.0.1
|
50 |
+
nvidia-cusparse-cu11==11.7.4.91
|
51 |
+
nvidia-nccl-cu11==2.14.3
|
52 |
+
nvidia-nvtx-cu11==11.7.91
|
53 |
+
orjson==3.8.12
|
54 |
+
packaging==23.1
|
55 |
+
pandas==2.0.1
|
56 |
+
Pillow==9.5.0
|
57 |
+
pydantic==1.10.7
|
58 |
+
pydub==0.25.1
|
59 |
+
Pygments==2.15.1
|
60 |
+
pyparsing==3.0.9
|
61 |
+
pyrsistent==0.19.3
|
62 |
+
python-dateutil==2.8.2
|
63 |
+
python-multipart==0.0.6
|
64 |
+
pytz==2023.3
|
65 |
+
PyYAML==6.0
|
66 |
+
regex==2023.5.5
|
67 |
+
requests==2.30.0
|
68 |
+
scipy==1.10.1
|
69 |
+
semantic-version==2.10.0
|
70 |
+
six==1.16.0
|
71 |
+
sniffio==1.3.0
|
72 |
+
starlette==0.27.0
|
73 |
+
sympy==1.12
|
74 |
+
tokenizers==0.13.3
|
75 |
+
toolz==0.12.0
|
76 |
+
torch==2.0.1
|
77 |
+
torchaudio==2.0.2
|
78 |
+
torchvision==0.15.2
|
79 |
+
tqdm==4.65.0
|
80 |
+
transformers==4.29.2
|
81 |
+
triton==2.0.0
|
82 |
+
typing_extensions==4.5.0
|
83 |
+
tzdata==2023.3
|
84 |
+
uc-micro-py==1.0.2
|
85 |
+
urllib3==2.0.2
|
86 |
+
uvicorn==0.22.0
|
87 |
+
websockets==11.0.3
|
88 |
+
yarl==1.9.2
|