Spaces:
Build error
Build error
Delete types.py
Browse files
types.py
DELETED
@@ -1,270 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2024 HuggingFace Inc.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
import os
|
16 |
-
import pathlib
|
17 |
-
import tempfile
|
18 |
-
import uuid
|
19 |
-
|
20 |
-
import numpy as np
|
21 |
-
|
22 |
-
from transformers.utils import (
|
23 |
-
is_soundfile_availble,
|
24 |
-
is_torch_available,
|
25 |
-
is_vision_available,
|
26 |
-
)
|
27 |
-
import logging
|
28 |
-
|
29 |
-
|
30 |
-
logger = logging.getLogger(__name__)
|
31 |
-
|
32 |
-
if is_vision_available():
|
33 |
-
from PIL import Image
|
34 |
-
from PIL.Image import Image as ImageType
|
35 |
-
else:
|
36 |
-
ImageType = object
|
37 |
-
|
38 |
-
if is_torch_available():
|
39 |
-
import torch
|
40 |
-
from torch import Tensor
|
41 |
-
else:
|
42 |
-
Tensor = object
|
43 |
-
|
44 |
-
if is_soundfile_availble():
|
45 |
-
import soundfile as sf
|
46 |
-
|
47 |
-
|
48 |
-
class AgentType:
|
49 |
-
"""
|
50 |
-
Abstract class to be reimplemented to define types that can be returned by agents.
|
51 |
-
|
52 |
-
These objects serve three purposes:
|
53 |
-
|
54 |
-
- They behave as they were the type they're meant to be, e.g., a string for text, a PIL.Image for images
|
55 |
-
- They can be stringified: str(object) in order to return a string defining the object
|
56 |
-
- They should be displayed correctly in ipython notebooks/colab/jupyter
|
57 |
-
"""
|
58 |
-
|
59 |
-
def __init__(self, value):
|
60 |
-
self._value = value
|
61 |
-
|
62 |
-
def __str__(self):
|
63 |
-
return self.to_string()
|
64 |
-
|
65 |
-
def to_raw(self):
|
66 |
-
logger.error(
|
67 |
-
"This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable"
|
68 |
-
)
|
69 |
-
return self._value
|
70 |
-
|
71 |
-
def to_string(self) -> str:
|
72 |
-
logger.error(
|
73 |
-
"This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable"
|
74 |
-
)
|
75 |
-
return str(self._value)
|
76 |
-
|
77 |
-
|
78 |
-
class AgentText(AgentType, str):
|
79 |
-
"""
|
80 |
-
Text type returned by the agent. Behaves as a string.
|
81 |
-
"""
|
82 |
-
|
83 |
-
def to_raw(self):
|
84 |
-
return self._value
|
85 |
-
|
86 |
-
def to_string(self):
|
87 |
-
return str(self._value)
|
88 |
-
|
89 |
-
|
90 |
-
class AgentImage(AgentType, ImageType):
|
91 |
-
"""
|
92 |
-
Image type returned by the agent. Behaves as a PIL.Image.
|
93 |
-
"""
|
94 |
-
|
95 |
-
def __init__(self, value):
|
96 |
-
AgentType.__init__(self, value)
|
97 |
-
ImageType.__init__(self)
|
98 |
-
|
99 |
-
if not is_vision_available():
|
100 |
-
raise ImportError("PIL must be installed in order to handle images.")
|
101 |
-
|
102 |
-
self._path = None
|
103 |
-
self._raw = None
|
104 |
-
self._tensor = None
|
105 |
-
|
106 |
-
if isinstance(value, ImageType):
|
107 |
-
self._raw = value
|
108 |
-
elif isinstance(value, (str, pathlib.Path)):
|
109 |
-
self._path = value
|
110 |
-
elif isinstance(value, torch.Tensor):
|
111 |
-
self._tensor = value
|
112 |
-
elif isinstance(value, np.ndarray):
|
113 |
-
self._tensor = torch.from_numpy(value)
|
114 |
-
else:
|
115 |
-
raise TypeError(
|
116 |
-
f"Unsupported type for {self.__class__.__name__}: {type(value)}"
|
117 |
-
)
|
118 |
-
|
119 |
-
def _ipython_display_(self, include=None, exclude=None):
|
120 |
-
"""
|
121 |
-
Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...)
|
122 |
-
"""
|
123 |
-
from IPython.display import Image, display
|
124 |
-
|
125 |
-
display(Image(self.to_string()))
|
126 |
-
|
127 |
-
def to_raw(self):
|
128 |
-
"""
|
129 |
-
Returns the "raw" version of that object. In the case of an AgentImage, it is a PIL.Image.
|
130 |
-
"""
|
131 |
-
if self._raw is not None:
|
132 |
-
return self._raw
|
133 |
-
|
134 |
-
if self._path is not None:
|
135 |
-
self._raw = Image.open(self._path)
|
136 |
-
return self._raw
|
137 |
-
|
138 |
-
if self._tensor is not None:
|
139 |
-
array = self._tensor.cpu().detach().numpy()
|
140 |
-
return Image.fromarray((255 - array * 255).astype(np.uint8))
|
141 |
-
|
142 |
-
def to_string(self):
|
143 |
-
"""
|
144 |
-
Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized
|
145 |
-
version of the image.
|
146 |
-
"""
|
147 |
-
if self._path is not None:
|
148 |
-
return self._path
|
149 |
-
|
150 |
-
if self._raw is not None:
|
151 |
-
directory = tempfile.mkdtemp()
|
152 |
-
self._path = os.path.join(directory, str(uuid.uuid4()) + ".png")
|
153 |
-
self._raw.save(self._path, format="png")
|
154 |
-
return self._path
|
155 |
-
|
156 |
-
if self._tensor is not None:
|
157 |
-
array = self._tensor.cpu().detach().numpy()
|
158 |
-
|
159 |
-
# There is likely simpler than load into image into save
|
160 |
-
img = Image.fromarray((255 - array * 255).astype(np.uint8))
|
161 |
-
|
162 |
-
directory = tempfile.mkdtemp()
|
163 |
-
self._path = os.path.join(directory, str(uuid.uuid4()) + ".png")
|
164 |
-
img.save(self._path, format="png")
|
165 |
-
|
166 |
-
return self._path
|
167 |
-
|
168 |
-
def save(self, output_bytes, format: str = None, **params):
|
169 |
-
"""
|
170 |
-
Saves the image to a file.
|
171 |
-
Args:
|
172 |
-
output_bytes (bytes): The output bytes to save the image to.
|
173 |
-
format (str): The format to use for the output image. The format is the same as in PIL.Image.save.
|
174 |
-
**params: Additional parameters to pass to PIL.Image.save.
|
175 |
-
"""
|
176 |
-
img = self.to_raw()
|
177 |
-
img.save(output_bytes, format=format, **params)
|
178 |
-
|
179 |
-
|
180 |
-
class AgentAudio(AgentType, str):
|
181 |
-
"""
|
182 |
-
Audio type returned by the agent.
|
183 |
-
"""
|
184 |
-
|
185 |
-
def __init__(self, value, samplerate=16_000):
|
186 |
-
super().__init__(value)
|
187 |
-
|
188 |
-
if not is_soundfile_availble():
|
189 |
-
raise ImportError("soundfile must be installed in order to handle audio.")
|
190 |
-
|
191 |
-
self._path = None
|
192 |
-
self._tensor = None
|
193 |
-
|
194 |
-
self.samplerate = samplerate
|
195 |
-
if isinstance(value, (str, pathlib.Path)):
|
196 |
-
self._path = value
|
197 |
-
elif is_torch_available() and isinstance(value, torch.Tensor):
|
198 |
-
self._tensor = value
|
199 |
-
elif isinstance(value, tuple):
|
200 |
-
self.samplerate = value[0]
|
201 |
-
if isinstance(value[1], np.ndarray):
|
202 |
-
self._tensor = torch.from_numpy(value[1])
|
203 |
-
else:
|
204 |
-
self._tensor = torch.tensor(value[1])
|
205 |
-
else:
|
206 |
-
raise ValueError(f"Unsupported audio type: {type(value)}")
|
207 |
-
|
208 |
-
def _ipython_display_(self, include=None, exclude=None):
|
209 |
-
"""
|
210 |
-
Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...)
|
211 |
-
"""
|
212 |
-
from IPython.display import Audio, display
|
213 |
-
|
214 |
-
display(Audio(self.to_string(), rate=self.samplerate))
|
215 |
-
|
216 |
-
def to_raw(self):
|
217 |
-
"""
|
218 |
-
Returns the "raw" version of that object. It is a `torch.Tensor` object.
|
219 |
-
"""
|
220 |
-
if self._tensor is not None:
|
221 |
-
return self._tensor
|
222 |
-
|
223 |
-
if self._path is not None:
|
224 |
-
tensor, self.samplerate = sf.read(self._path)
|
225 |
-
self._tensor = torch.tensor(tensor)
|
226 |
-
return self._tensor
|
227 |
-
|
228 |
-
def to_string(self):
|
229 |
-
"""
|
230 |
-
Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized
|
231 |
-
version of the audio.
|
232 |
-
"""
|
233 |
-
if self._path is not None:
|
234 |
-
return self._path
|
235 |
-
|
236 |
-
if self._tensor is not None:
|
237 |
-
directory = tempfile.mkdtemp()
|
238 |
-
self._path = os.path.join(directory, str(uuid.uuid4()) + ".wav")
|
239 |
-
sf.write(self._path, self._tensor, samplerate=self.samplerate)
|
240 |
-
return self._path
|
241 |
-
|
242 |
-
|
243 |
-
AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio}
|
244 |
-
INSTANCE_TYPE_MAPPING = {str: AgentText, ImageType: AgentImage}
|
245 |
-
|
246 |
-
if is_torch_available():
|
247 |
-
INSTANCE_TYPE_MAPPING[Tensor] = AgentAudio
|
248 |
-
|
249 |
-
|
250 |
-
def handle_agent_inputs(*args, **kwargs):
|
251 |
-
args = [(arg.to_raw() if isinstance(arg, AgentType) else arg) for arg in args]
|
252 |
-
kwargs = {
|
253 |
-
k: (v.to_raw() if isinstance(v, AgentType) else v) for k, v in kwargs.items()
|
254 |
-
}
|
255 |
-
return args, kwargs
|
256 |
-
|
257 |
-
|
258 |
-
def handle_agent_outputs(output, output_type=None):
|
259 |
-
if output_type in AGENT_TYPE_MAPPING:
|
260 |
-
# If the class has defined outputs, we can map directly according to the class definition
|
261 |
-
decoded_outputs = AGENT_TYPE_MAPPING[output_type](output)
|
262 |
-
return decoded_outputs
|
263 |
-
else:
|
264 |
-
# If the class does not have defined output, then we map according to the type
|
265 |
-
for _k, _v in INSTANCE_TYPE_MAPPING.items():
|
266 |
-
if isinstance(output, _k):
|
267 |
-
return _v(output)
|
268 |
-
return output
|
269 |
-
|
270 |
-
__all__ = ["AgentType", "AgentImage", "AgentText", "AgentAudio"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|