Spaces:
Build error
Build error
Upload tool
Browse files- app.py +4 -0
- requirements.txt +25 -0
- tool_config.json +7 -0
- tools.py +1098 -0
- types.py +270 -0
app.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import launch_gradio_demo
|
2 |
+
from tools import Get_current_timeTool
|
3 |
+
|
4 |
+
launch_gradio_demo(Get_current_timeTool)
|
requirements.txt
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
my_tool_module
|
2 |
+
transformers
|
3 |
+
importlib
|
4 |
+
uuid
|
5 |
+
io
|
6 |
+
huggingface_hub
|
7 |
+
inspect
|
8 |
+
builtins
|
9 |
+
pathlib
|
10 |
+
os
|
11 |
+
PIL
|
12 |
+
functools
|
13 |
+
torch
|
14 |
+
typing
|
15 |
+
{module_name}
|
16 |
+
packaging
|
17 |
+
gradio_client
|
18 |
+
ast
|
19 |
+
IPython
|
20 |
+
json
|
21 |
+
logging
|
22 |
+
base64
|
23 |
+
accelerate
|
24 |
+
textwrap
|
25 |
+
tempfile
|
tool_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"description": "Gets the current time.",
|
3 |
+
"inputs": {},
|
4 |
+
"name": "get_current_time",
|
5 |
+
"output_type": "string",
|
6 |
+
"tool_class": "tools.Get_current_timeTool"
|
7 |
+
}
|
tools.py
ADDED
@@ -0,0 +1,1098 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
|
4 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
import ast
|
18 |
+
import base64
|
19 |
+
import importlib
|
20 |
+
import inspect
|
21 |
+
import io
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
import tempfile
|
25 |
+
import textwrap
|
26 |
+
from functools import lru_cache, wraps
|
27 |
+
from pathlib import Path
|
28 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
29 |
+
|
30 |
+
from huggingface_hub import (
|
31 |
+
create_repo,
|
32 |
+
get_collection,
|
33 |
+
hf_hub_download,
|
34 |
+
metadata_update,
|
35 |
+
upload_folder,
|
36 |
+
)
|
37 |
+
from huggingface_hub.utils import RepositoryNotFoundError, build_hf_headers, get_session
|
38 |
+
from packaging import version
|
39 |
+
|
40 |
+
from transformers.dynamic_module_utils import (
|
41 |
+
custom_object_save,
|
42 |
+
get_class_from_dynamic_module,
|
43 |
+
get_imports,
|
44 |
+
)
|
45 |
+
from transformers import AutoProcessor
|
46 |
+
from transformers.utils import (
|
47 |
+
CONFIG_NAME,
|
48 |
+
TypeHintParsingException,
|
49 |
+
cached_file,
|
50 |
+
get_json_schema,
|
51 |
+
is_accelerate_available,
|
52 |
+
is_torch_available,
|
53 |
+
is_vision_available,
|
54 |
+
)
|
55 |
+
from .types import ImageType, handle_agent_inputs, handle_agent_outputs
|
56 |
+
import logging
|
57 |
+
|
58 |
+
logger = logging.getLogger(__name__)
|
59 |
+
|
60 |
+
|
61 |
+
if is_torch_available():
|
62 |
+
import torch
|
63 |
+
|
64 |
+
if is_accelerate_available():
|
65 |
+
from accelerate import PartialState
|
66 |
+
from accelerate.utils import send_to_device
|
67 |
+
|
68 |
+
|
69 |
+
TOOL_CONFIG_FILE = "tool_config.json"
|
70 |
+
|
71 |
+
|
72 |
+
def get_repo_type(repo_id, repo_type=None, **hub_kwargs):
|
73 |
+
if repo_type is not None:
|
74 |
+
return repo_type
|
75 |
+
try:
|
76 |
+
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space", **hub_kwargs)
|
77 |
+
return "space"
|
78 |
+
except RepositoryNotFoundError:
|
79 |
+
try:
|
80 |
+
hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="model", **hub_kwargs)
|
81 |
+
return "model"
|
82 |
+
except RepositoryNotFoundError:
|
83 |
+
raise EnvironmentError(
|
84 |
+
f"`{repo_id}` does not seem to be a valid repo identifier on the Hub."
|
85 |
+
)
|
86 |
+
except Exception:
|
87 |
+
return "model"
|
88 |
+
except Exception:
|
89 |
+
return "space"
|
90 |
+
|
91 |
+
|
92 |
+
def setup_default_tools():
|
93 |
+
default_tools = {}
|
94 |
+
main_module = importlib.import_module("transformers")
|
95 |
+
tools_module = main_module.agents
|
96 |
+
|
97 |
+
for task_name, tool_class_name in TOOL_MAPPING.items():
|
98 |
+
tool_class = getattr(tools_module, tool_class_name)
|
99 |
+
tool_instance = tool_class()
|
100 |
+
default_tools[tool_class.name] = tool_instance
|
101 |
+
|
102 |
+
return default_tools
|
103 |
+
|
104 |
+
|
105 |
+
# docstyle-ignore
|
106 |
+
APP_FILE_TEMPLATE = """from transformers import launch_gradio_demo
|
107 |
+
from {module_name} import {class_name}
|
108 |
+
|
109 |
+
launch_gradio_demo({class_name})
|
110 |
+
"""
|
111 |
+
|
112 |
+
|
113 |
+
def validate_after_init(cls, do_validate_forward: bool = True):
|
114 |
+
original_init = cls.__init__
|
115 |
+
|
116 |
+
@wraps(original_init)
|
117 |
+
def new_init(self, *args, **kwargs):
|
118 |
+
original_init(self, *args, **kwargs)
|
119 |
+
self.validate_arguments(do_validate_forward=do_validate_forward)
|
120 |
+
|
121 |
+
cls.__init__ = new_init
|
122 |
+
return cls
|
123 |
+
|
124 |
+
def validate_forward_method_args(cls):
|
125 |
+
"""Validates that all names in forward method are properly defined.
|
126 |
+
In particular it will check that all imports are done within the function."""
|
127 |
+
if 'forward' not in cls.__dict__:
|
128 |
+
return
|
129 |
+
|
130 |
+
forward = cls.__dict__['forward']
|
131 |
+
source_code = textwrap.dedent(inspect.getsource(forward))
|
132 |
+
tree = ast.parse(source_code)
|
133 |
+
|
134 |
+
# Get function arguments
|
135 |
+
func_node = tree.body[0]
|
136 |
+
arg_names = {arg.arg for arg in func_node.args.args}
|
137 |
+
|
138 |
+
|
139 |
+
import builtins
|
140 |
+
builtin_names = set(vars(builtins))
|
141 |
+
|
142 |
+
|
143 |
+
# Find all used names that aren't arguments or self attributes
|
144 |
+
class NameChecker(ast.NodeVisitor):
|
145 |
+
def __init__(self):
|
146 |
+
self.undefined_names = set()
|
147 |
+
self.imports = {}
|
148 |
+
self.from_imports = {}
|
149 |
+
|
150 |
+
def visit_Import(self, node):
|
151 |
+
"""Handle simple imports like 'import datetime'."""
|
152 |
+
for name in node.names:
|
153 |
+
actual_name = name.asname or name.name
|
154 |
+
self.imports[actual_name] = (name.name, actual_name)
|
155 |
+
|
156 |
+
def visit_ImportFrom(self, node):
|
157 |
+
"""Handle from imports like 'from datetime import datetime'."""
|
158 |
+
module = node.module or ''
|
159 |
+
for name in node.names:
|
160 |
+
actual_name = name.asname or name.name
|
161 |
+
self.from_imports[actual_name] = (module, name.name, actual_name)
|
162 |
+
|
163 |
+
def visit_Name(self, node):
|
164 |
+
if (isinstance(node.ctx, ast.Load) and not (
|
165 |
+
node.id == "tool" or
|
166 |
+
node.id in builtin_names or
|
167 |
+
node.id in arg_names or
|
168 |
+
node.id == 'self'
|
169 |
+
)):
|
170 |
+
if node.id not in self.from_imports and node.id not in self.imports:
|
171 |
+
self.undefined_names.add(node.id)
|
172 |
+
|
173 |
+
def visit_Attribute(self, node):
|
174 |
+
# Skip self.something
|
175 |
+
if not (isinstance(node.value, ast.Name) and node.value.id == 'self'):
|
176 |
+
self.generic_visit(node)
|
177 |
+
|
178 |
+
checker = NameChecker()
|
179 |
+
checker.visit(tree)
|
180 |
+
|
181 |
+
if checker.undefined_names:
|
182 |
+
raise ValueError(
|
183 |
+
f"""The following names in forward method are not defined: {', '.join(checker.undefined_names)}.
|
184 |
+
Make sure all imports and variables are defined within the method.
|
185 |
+
For instance:
|
186 |
+
|
187 |
+
"""
|
188 |
+
)
|
189 |
+
|
190 |
+
AUTHORIZED_TYPES = [
|
191 |
+
"string",
|
192 |
+
"boolean",
|
193 |
+
"integer",
|
194 |
+
"number",
|
195 |
+
"image",
|
196 |
+
"audio",
|
197 |
+
"any",
|
198 |
+
]
|
199 |
+
|
200 |
+
CONVERSION_DICT = {"str": "string", "int": "integer", "float": "number"}
|
201 |
+
|
202 |
+
|
203 |
+
class Tool:
|
204 |
+
"""
|
205 |
+
A base class for the functions used by the agent. Subclass this and implement the `forward` method as well as the
|
206 |
+
following class attributes:
|
207 |
+
|
208 |
+
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
|
209 |
+
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
|
210 |
+
returns the text contained in the file'.
|
211 |
+
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
|
212 |
+
`"text-classifier"` or `"image_generator"`.
|
213 |
+
- **inputs** (`Dict[str, Dict[str, Union[str, type]]]`) -- The dict of modalities expected for the inputs.
|
214 |
+
It has one `type`key and a `description`key.
|
215 |
+
This is used by `launch_gradio_demo` or to make a nice space from your tool, and also can be used in the generated
|
216 |
+
description for your tool.
|
217 |
+
- **output_type** (`type`) -- The type of the tool output. This is used by `launch_gradio_demo`
|
218 |
+
or to make a nice space from your tool, and also can be used in the generated description for your tool.
|
219 |
+
|
220 |
+
You can also override the method [`~Tool.setup`] if your tool has an expensive operation to perform before being
|
221 |
+
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
|
222 |
+
instantiation.
|
223 |
+
"""
|
224 |
+
|
225 |
+
name: str
|
226 |
+
description: str
|
227 |
+
inputs: Dict[str, Dict[str, Union[str, type]]]
|
228 |
+
output_type: str
|
229 |
+
|
230 |
+
def __init__(self, *args, **kwargs):
|
231 |
+
self.is_initialized = False
|
232 |
+
|
233 |
+
def __init_subclass__(cls, **kwargs):
|
234 |
+
super().__init_subclass__(**kwargs)
|
235 |
+
validate_forward_method_args(cls)
|
236 |
+
validate_after_init(cls, do_validate_forward=False)
|
237 |
+
|
238 |
+
|
239 |
+
def validate_arguments(self, do_validate_forward: bool = True):
|
240 |
+
required_attributes = {
|
241 |
+
"description": str,
|
242 |
+
"name": str,
|
243 |
+
"inputs": dict,
|
244 |
+
"output_type": str,
|
245 |
+
}
|
246 |
+
|
247 |
+
for attr, expected_type in required_attributes.items():
|
248 |
+
attr_value = getattr(self, attr, None)
|
249 |
+
if attr_value is None:
|
250 |
+
raise TypeError(f"You must set an attribute {attr}.")
|
251 |
+
if not isinstance(attr_value, expected_type):
|
252 |
+
raise TypeError(
|
253 |
+
f"Attribute {attr} should have type {expected_type.__name__}, got {type(attr_value)} instead."
|
254 |
+
)
|
255 |
+
for input_name, input_content in self.inputs.items():
|
256 |
+
assert isinstance(
|
257 |
+
input_content, dict
|
258 |
+
), f"Input '{input_name}' should be a dictionary."
|
259 |
+
assert (
|
260 |
+
"type" in input_content and "description" in input_content
|
261 |
+
), f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
|
262 |
+
if input_content["type"] not in AUTHORIZED_TYPES:
|
263 |
+
raise Exception(
|
264 |
+
f"Input '{input_name}': type '{input_content['type']}' is not an authorized value, should be one of {AUTHORIZED_TYPES}."
|
265 |
+
)
|
266 |
+
|
267 |
+
assert getattr(self, "output_type", None) in AUTHORIZED_TYPES
|
268 |
+
if do_validate_forward:
|
269 |
+
signature = inspect.signature(self.forward)
|
270 |
+
if not set(signature.parameters.keys()) == set(self.inputs.keys()):
|
271 |
+
raise Exception(
|
272 |
+
"Tool's 'forward' method should take 'self' as its first argument, then its next arguments should match the keys of tool attribute 'inputs'."
|
273 |
+
)
|
274 |
+
|
275 |
+
def forward(self, *args, **kwargs):
|
276 |
+
return NotImplementedError("Write this method in your subclass of `Tool`.")
|
277 |
+
|
278 |
+
def __call__(self, *args, **kwargs):
|
279 |
+
if not self.is_initialized:
|
280 |
+
self.setup()
|
281 |
+
args, kwargs = handle_agent_inputs(*args, **kwargs)
|
282 |
+
outputs = self.forward(*args, **kwargs)
|
283 |
+
return handle_agent_outputs(outputs, self.output_type)
|
284 |
+
|
285 |
+
def setup(self):
|
286 |
+
"""
|
287 |
+
Overwrite this method here for any operation that is expensive and needs to be executed before you start using
|
288 |
+
your tool. Such as loading a big model.
|
289 |
+
"""
|
290 |
+
self.is_initialized = True
|
291 |
+
|
292 |
+
def save(self, output_dir):
|
293 |
+
"""
|
294 |
+
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
|
295 |
+
tool in `output_dir` as well as autogenerate:
|
296 |
+
|
297 |
+
- an `app.py` file so that your tool can be converted to a space
|
298 |
+
- a `requirements.txt` containing the names of the module used by your tool (as detected when inspecting its
|
299 |
+
code)
|
300 |
+
|
301 |
+
You should only use this method to save tools that are defined in a separate module (not `__main__`).
|
302 |
+
|
303 |
+
Args:
|
304 |
+
output_dir (`str`): The folder in which you want to save your tool.
|
305 |
+
"""
|
306 |
+
os.makedirs(output_dir, exist_ok=True)
|
307 |
+
# Save module file
|
308 |
+
if self.__module__ == "__main__":
|
309 |
+
raise ValueError(
|
310 |
+
f"We can't save the code defining {self} in {output_dir} as it's been defined in __main__. You "
|
311 |
+
"have to put this code in a separate module so we can include it in the saved folder."
|
312 |
+
)
|
313 |
+
module_files = custom_object_save(self, output_dir)
|
314 |
+
|
315 |
+
module_name = self.__class__.__module__
|
316 |
+
last_module = module_name.split(".")[-1]
|
317 |
+
full_name = f"{last_module}.{self.__class__.__name__}"
|
318 |
+
|
319 |
+
# Save config file
|
320 |
+
config_file = os.path.join(output_dir, "tool_config.json")
|
321 |
+
if os.path.isfile(config_file):
|
322 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
323 |
+
tool_config = json.load(f)
|
324 |
+
else:
|
325 |
+
tool_config = {}
|
326 |
+
|
327 |
+
tool_config = {
|
328 |
+
"tool_class": full_name,
|
329 |
+
"description": self.description,
|
330 |
+
"name": self.name,
|
331 |
+
"inputs": self.inputs,
|
332 |
+
"output_type": str(self.output_type),
|
333 |
+
}
|
334 |
+
with open(config_file, "w", encoding="utf-8") as f:
|
335 |
+
f.write(json.dumps(tool_config, indent=2, sort_keys=True) + "\n")
|
336 |
+
|
337 |
+
# Save app file
|
338 |
+
app_file = os.path.join(output_dir, "app.py")
|
339 |
+
with open(app_file, "w", encoding="utf-8") as f:
|
340 |
+
f.write(
|
341 |
+
APP_FILE_TEMPLATE.format(
|
342 |
+
module_name=last_module, class_name=self.__class__.__name__
|
343 |
+
)
|
344 |
+
)
|
345 |
+
|
346 |
+
# Save requirements file
|
347 |
+
requirements_file = os.path.join(output_dir, "requirements.txt")
|
348 |
+
imports = []
|
349 |
+
for module in module_files:
|
350 |
+
imports.extend(get_imports(module))
|
351 |
+
imports = list(set(imports))
|
352 |
+
with open(requirements_file, "w", encoding="utf-8") as f:
|
353 |
+
f.write("\n".join(imports) + "\n")
|
354 |
+
|
355 |
+
@classmethod
|
356 |
+
def from_hub(
|
357 |
+
cls,
|
358 |
+
repo_id: str,
|
359 |
+
token: Optional[str] = None,
|
360 |
+
**kwargs,
|
361 |
+
):
|
362 |
+
"""
|
363 |
+
Loads a tool defined on the Hub.
|
364 |
+
|
365 |
+
<Tip warning={true}>
|
366 |
+
|
367 |
+
Loading a tool from the Hub means that you'll download the tool and execute it locally.
|
368 |
+
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
|
369 |
+
installing a package using pip/npm/apt.
|
370 |
+
|
371 |
+
</Tip>
|
372 |
+
|
373 |
+
Args:
|
374 |
+
repo_id (`str`):
|
375 |
+
The name of the repo on the Hub where your tool is defined.
|
376 |
+
token (`str`, *optional*):
|
377 |
+
The token to identify you on hf.co. If unset, will use the token generated when running
|
378 |
+
`huggingface-cli login` (stored in `~/.huggingface`).
|
379 |
+
kwargs (additional keyword arguments, *optional*):
|
380 |
+
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
|
381 |
+
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
|
382 |
+
others will be passed along to its init.
|
383 |
+
"""
|
384 |
+
hub_kwargs_names = [
|
385 |
+
"cache_dir",
|
386 |
+
"force_download",
|
387 |
+
"resume_download",
|
388 |
+
"proxies",
|
389 |
+
"revision",
|
390 |
+
"repo_type",
|
391 |
+
"subfolder",
|
392 |
+
"local_files_only",
|
393 |
+
]
|
394 |
+
hub_kwargs = {k: v for k, v in kwargs.items() if k in hub_kwargs_names}
|
395 |
+
|
396 |
+
# Try to get the tool config first.
|
397 |
+
hub_kwargs["repo_type"] = get_repo_type(repo_id, **hub_kwargs)
|
398 |
+
resolved_config_file = cached_file(
|
399 |
+
repo_id,
|
400 |
+
TOOL_CONFIG_FILE,
|
401 |
+
token=token,
|
402 |
+
**hub_kwargs,
|
403 |
+
_raise_exceptions_for_gated_repo=False,
|
404 |
+
_raise_exceptions_for_missing_entries=False,
|
405 |
+
_raise_exceptions_for_connection_errors=False,
|
406 |
+
)
|
407 |
+
is_tool_config = resolved_config_file is not None
|
408 |
+
if resolved_config_file is None:
|
409 |
+
resolved_config_file = cached_file(
|
410 |
+
repo_id,
|
411 |
+
CONFIG_NAME,
|
412 |
+
token=token,
|
413 |
+
**hub_kwargs,
|
414 |
+
_raise_exceptions_for_gated_repo=False,
|
415 |
+
_raise_exceptions_for_missing_entries=False,
|
416 |
+
_raise_exceptions_for_connection_errors=False,
|
417 |
+
)
|
418 |
+
if resolved_config_file is None:
|
419 |
+
raise EnvironmentError(
|
420 |
+
f"{repo_id} does not appear to provide a valid configuration in `tool_config.json` or `config.json`."
|
421 |
+
)
|
422 |
+
|
423 |
+
with open(resolved_config_file, encoding="utf-8") as reader:
|
424 |
+
config = json.load(reader)
|
425 |
+
|
426 |
+
if not is_tool_config:
|
427 |
+
if "custom_tool" not in config:
|
428 |
+
raise EnvironmentError(
|
429 |
+
f"{repo_id} does not provide a mapping to custom tools in its configuration `config.json`."
|
430 |
+
)
|
431 |
+
custom_tool = config["custom_tool"]
|
432 |
+
else:
|
433 |
+
custom_tool = config
|
434 |
+
|
435 |
+
tool_class = custom_tool["tool_class"]
|
436 |
+
tool_class = get_class_from_dynamic_module(
|
437 |
+
tool_class, repo_id, token=token, **hub_kwargs
|
438 |
+
)
|
439 |
+
|
440 |
+
if len(tool_class.name) == 0:
|
441 |
+
tool_class.name = custom_tool["name"]
|
442 |
+
if tool_class.name != custom_tool["name"]:
|
443 |
+
logger.warning(
|
444 |
+
f"{tool_class.__name__} implements a different name in its configuration and class. Using the tool "
|
445 |
+
"configuration name."
|
446 |
+
)
|
447 |
+
tool_class.name = custom_tool["name"]
|
448 |
+
|
449 |
+
if len(tool_class.description) == 0:
|
450 |
+
tool_class.description = custom_tool["description"]
|
451 |
+
if tool_class.description != custom_tool["description"]:
|
452 |
+
logger.warning(
|
453 |
+
f"{tool_class.__name__} implements a different description in its configuration and class. Using the "
|
454 |
+
"tool configuration description."
|
455 |
+
)
|
456 |
+
tool_class.description = custom_tool["description"]
|
457 |
+
|
458 |
+
if tool_class.inputs != custom_tool["inputs"]:
|
459 |
+
tool_class.inputs = custom_tool["inputs"]
|
460 |
+
if tool_class.output_type != custom_tool["output_type"]:
|
461 |
+
tool_class.output_type = custom_tool["output_type"]
|
462 |
+
|
463 |
+
if not isinstance(tool_class.inputs, dict):
|
464 |
+
tool_class.inputs = ast.literal_eval(tool_class.inputs)
|
465 |
+
|
466 |
+
return tool_class(**kwargs)
|
467 |
+
|
468 |
+
def push_to_hub(
|
469 |
+
self,
|
470 |
+
repo_id: str,
|
471 |
+
commit_message: str = "Upload tool",
|
472 |
+
private: Optional[bool] = None,
|
473 |
+
token: Optional[Union[bool, str]] = None,
|
474 |
+
create_pr: bool = False,
|
475 |
+
) -> str:
|
476 |
+
"""
|
477 |
+
Upload the tool to the Hub.
|
478 |
+
|
479 |
+
For this method to work properly, your tool must have been defined in a separate module (not `__main__`).
|
480 |
+
For instance:
|
481 |
+
```
|
482 |
+
from my_tool_module import MyTool
|
483 |
+
my_tool = MyTool()
|
484 |
+
my_tool.push_to_hub("my-username/my-space")
|
485 |
+
```
|
486 |
+
|
487 |
+
Parameters:
|
488 |
+
repo_id (`str`):
|
489 |
+
The name of the repository you want to push your tool to. It should contain your organization name when
|
490 |
+
pushing to a given organization.
|
491 |
+
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
|
492 |
+
Message to commit while pushing.
|
493 |
+
private (`bool`, *optional*):
|
494 |
+
Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists.
|
495 |
+
token (`bool` or `str`, *optional*):
|
496 |
+
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
|
497 |
+
when running `huggingface-cli login` (stored in `~/.huggingface`).
|
498 |
+
create_pr (`bool`, *optional*, defaults to `False`):
|
499 |
+
Whether or not to create a PR with the uploaded files or directly commit.
|
500 |
+
"""
|
501 |
+
repo_url = create_repo(
|
502 |
+
repo_id=repo_id,
|
503 |
+
token=token,
|
504 |
+
private=private,
|
505 |
+
exist_ok=True,
|
506 |
+
repo_type="space",
|
507 |
+
space_sdk="gradio",
|
508 |
+
)
|
509 |
+
repo_id = repo_url.repo_id
|
510 |
+
metadata_update(repo_id, {"tags": ["tool"]}, repo_type="space")
|
511 |
+
|
512 |
+
with tempfile.TemporaryDirectory() as work_dir:
|
513 |
+
# Save all files.
|
514 |
+
self.save(work_dir)
|
515 |
+
logger.info(
|
516 |
+
f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}"
|
517 |
+
)
|
518 |
+
return upload_folder(
|
519 |
+
repo_id=repo_id,
|
520 |
+
commit_message=commit_message,
|
521 |
+
folder_path=work_dir,
|
522 |
+
token=token,
|
523 |
+
create_pr=create_pr,
|
524 |
+
repo_type="space",
|
525 |
+
)
|
526 |
+
|
527 |
+
@staticmethod
|
528 |
+
def from_space(
|
529 |
+
space_id: str,
|
530 |
+
name: str,
|
531 |
+
description: str,
|
532 |
+
api_name: Optional[str] = None,
|
533 |
+
token: Optional[str] = None,
|
534 |
+
):
|
535 |
+
"""
|
536 |
+
Creates a [`Tool`] from a Space given its id on the Hub.
|
537 |
+
|
538 |
+
Args:
|
539 |
+
space_id (`str`):
|
540 |
+
The id of the Space on the Hub.
|
541 |
+
name (`str`):
|
542 |
+
The name of the tool.
|
543 |
+
description (`str`):
|
544 |
+
The description of the tool.
|
545 |
+
api_name (`str`, *optional*):
|
546 |
+
The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
|
547 |
+
token (`str`, *optional*):
|
548 |
+
Add your token to access private spaces or increase your GPU quotas.
|
549 |
+
Returns:
|
550 |
+
[`Tool`]:
|
551 |
+
The Space, as a tool.
|
552 |
+
|
553 |
+
Examples:
|
554 |
+
```
|
555 |
+
image_generator = Tool.from_space(
|
556 |
+
space_id="black-forest-labs/FLUX.1-schnell",
|
557 |
+
name="image-generator",
|
558 |
+
description="Generate an image from a prompt"
|
559 |
+
)
|
560 |
+
image = image_generator("Generate an image of a cool surfer in Tahiti")
|
561 |
+
```
|
562 |
+
```
|
563 |
+
face_swapper = Tool.from_space(
|
564 |
+
"tuan2308/face-swap",
|
565 |
+
"face_swapper",
|
566 |
+
"Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
|
567 |
+
)
|
568 |
+
image = face_swapper('./aymeric.jpeg', './ruth.jpg')
|
569 |
+
```
|
570 |
+
"""
|
571 |
+
from gradio_client import Client, handle_file
|
572 |
+
from gradio_client.utils import is_http_url_like
|
573 |
+
|
574 |
+
class SpaceToolWrapper(Tool):
|
575 |
+
def __init__(
|
576 |
+
self,
|
577 |
+
space_id: str,
|
578 |
+
name: str,
|
579 |
+
description: str,
|
580 |
+
api_name: Optional[str] = None,
|
581 |
+
token: Optional[str] = None,
|
582 |
+
):
|
583 |
+
self.client = Client(space_id, hf_token=token)
|
584 |
+
self.name = name
|
585 |
+
self.description = description
|
586 |
+
space_description = self.client.view_api(
|
587 |
+
return_format="dict", print_info=False
|
588 |
+
)["named_endpoints"]
|
589 |
+
|
590 |
+
# If api_name is not defined, take the first of the available APIs for this space
|
591 |
+
if api_name is None:
|
592 |
+
api_name = list(space_description.keys())[0]
|
593 |
+
logger.warning(
|
594 |
+
f"Since `api_name` was not defined, it was automatically set to the first avilable API: `{api_name}`."
|
595 |
+
)
|
596 |
+
self.api_name = api_name
|
597 |
+
|
598 |
+
try:
|
599 |
+
space_description_api = space_description[api_name]
|
600 |
+
except KeyError:
|
601 |
+
raise KeyError(
|
602 |
+
f"Could not find specified {api_name=} among available api names."
|
603 |
+
)
|
604 |
+
|
605 |
+
self.inputs = {}
|
606 |
+
for parameter in space_description_api["parameters"]:
|
607 |
+
if not parameter["parameter_has_default"]:
|
608 |
+
parameter_type = parameter["type"]["type"]
|
609 |
+
if parameter_type == "object":
|
610 |
+
parameter_type = "any"
|
611 |
+
self.inputs[parameter["parameter_name"]] = {
|
612 |
+
"type": parameter_type,
|
613 |
+
"description": parameter["python_type"]["description"],
|
614 |
+
}
|
615 |
+
output_component = space_description_api["returns"][0]["component"]
|
616 |
+
if output_component == "Image":
|
617 |
+
self.output_type = "image"
|
618 |
+
elif output_component == "Audio":
|
619 |
+
self.output_type = "audio"
|
620 |
+
else:
|
621 |
+
self.output_type = "any"
|
622 |
+
|
623 |
+
def sanitize_argument_for_prediction(self, arg):
|
624 |
+
if isinstance(arg, ImageType):
|
625 |
+
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
626 |
+
arg.save(temp_file.name)
|
627 |
+
arg = temp_file.name
|
628 |
+
if (
|
629 |
+
isinstance(arg, (str, Path))
|
630 |
+
and Path(arg).exists()
|
631 |
+
and Path(arg).is_file()
|
632 |
+
) or is_http_url_like(arg):
|
633 |
+
arg = handle_file(arg)
|
634 |
+
return arg
|
635 |
+
|
636 |
+
def forward(self, *args, **kwargs):
|
637 |
+
# Preprocess args and kwargs:
|
638 |
+
args = list(args)
|
639 |
+
for i, arg in enumerate(args):
|
640 |
+
args[i] = self.sanitize_argument_for_prediction(arg)
|
641 |
+
for arg_name, arg in kwargs.items():
|
642 |
+
kwargs[arg_name] = self.sanitize_argument_for_prediction(arg)
|
643 |
+
|
644 |
+
output = self.client.predict(*args, api_name=self.api_name, **kwargs)
|
645 |
+
if isinstance(output, tuple) or isinstance(output, list):
|
646 |
+
return output[
|
647 |
+
0
|
648 |
+
] # Sometime the space also returns the generation seed, in which case the result is at index 0
|
649 |
+
return output
|
650 |
+
|
651 |
+
return SpaceToolWrapper(
|
652 |
+
space_id, name, description, api_name=api_name, token=token
|
653 |
+
)
|
654 |
+
|
655 |
+
@staticmethod
|
656 |
+
def from_gradio(gradio_tool):
|
657 |
+
"""
|
658 |
+
Creates a [`Tool`] from a gradio tool.
|
659 |
+
"""
|
660 |
+
import inspect
|
661 |
+
|
662 |
+
class GradioToolWrapper(Tool):
|
663 |
+
def __init__(self, _gradio_tool):
|
664 |
+
self.name = _gradio_tool.name
|
665 |
+
self.description = _gradio_tool.description
|
666 |
+
self.output_type = "string"
|
667 |
+
self._gradio_tool = _gradio_tool
|
668 |
+
func_args = list(inspect.signature(_gradio_tool.run).parameters.items())
|
669 |
+
self.inputs = {
|
670 |
+
key: {"type": CONVERSION_DICT[value.annotation], "description": ""}
|
671 |
+
for key, value in func_args
|
672 |
+
}
|
673 |
+
self.forward = self._gradio_tool.run
|
674 |
+
|
675 |
+
return GradioToolWrapper(gradio_tool)
|
676 |
+
|
677 |
+
@staticmethod
|
678 |
+
def from_langchain(langchain_tool):
|
679 |
+
"""
|
680 |
+
Creates a [`Tool`] from a langchain tool.
|
681 |
+
"""
|
682 |
+
|
683 |
+
class LangChainToolWrapper(Tool):
|
684 |
+
def __init__(self, _langchain_tool):
|
685 |
+
self.name = _langchain_tool.name.lower()
|
686 |
+
self.description = _langchain_tool.description
|
687 |
+
self.inputs = _langchain_tool.args.copy()
|
688 |
+
for input_content in self.inputs.values():
|
689 |
+
if "title" in input_content:
|
690 |
+
input_content.pop("title")
|
691 |
+
input_content["description"] = ""
|
692 |
+
self.output_type = "string"
|
693 |
+
self.langchain_tool = _langchain_tool
|
694 |
+
|
695 |
+
def forward(self, *args, **kwargs):
|
696 |
+
tool_input = kwargs.copy()
|
697 |
+
for index, argument in enumerate(args):
|
698 |
+
if index < len(self.inputs):
|
699 |
+
input_key = next(iter(self.inputs))
|
700 |
+
tool_input[input_key] = argument
|
701 |
+
return self.langchain_tool.run(tool_input)
|
702 |
+
|
703 |
+
return LangChainToolWrapper(langchain_tool)
|
704 |
+
|
705 |
+
|
706 |
+
DEFAULT_TOOL_DESCRIPTION_TEMPLATE = """
|
707 |
+
- {{ tool.name }}: {{ tool.description }}
|
708 |
+
Takes inputs: {{tool.inputs}}
|
709 |
+
Returns an output of type: {{tool.output_type}}
|
710 |
+
"""
|
711 |
+
|
712 |
+
|
713 |
+
def get_tool_description_with_args(
|
714 |
+
tool: Tool, description_template: Optional[str] = None
|
715 |
+
) -> str:
|
716 |
+
if description_template is None:
|
717 |
+
description_template = DEFAULT_TOOL_DESCRIPTION_TEMPLATE
|
718 |
+
compiled_template = compile_jinja_template(description_template)
|
719 |
+
rendered = compiled_template.render(
|
720 |
+
tool=tool,
|
721 |
+
)
|
722 |
+
return rendered
|
723 |
+
|
724 |
+
|
725 |
+
@lru_cache
|
726 |
+
def compile_jinja_template(template):
|
727 |
+
try:
|
728 |
+
import jinja2
|
729 |
+
from jinja2.exceptions import TemplateError
|
730 |
+
from jinja2.sandbox import ImmutableSandboxedEnvironment
|
731 |
+
except ImportError:
|
732 |
+
raise ImportError("template requires jinja2 to be installed.")
|
733 |
+
|
734 |
+
if version.parse(jinja2.__version__) < version.parse("3.1.0"):
|
735 |
+
raise ImportError(
|
736 |
+
"template requires jinja2>=3.1.0 to be installed. Your version is "
|
737 |
+
f"{jinja2.__version__}."
|
738 |
+
)
|
739 |
+
|
740 |
+
def raise_exception(message):
|
741 |
+
raise TemplateError(message)
|
742 |
+
|
743 |
+
jinja_env = ImmutableSandboxedEnvironment(trim_blocks=True, lstrip_blocks=True)
|
744 |
+
jinja_env.globals["raise_exception"] = raise_exception
|
745 |
+
return jinja_env.from_string(template)
|
746 |
+
|
747 |
+
|
748 |
+
def launch_gradio_demo(tool_class: Tool):
|
749 |
+
"""
|
750 |
+
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes
|
751 |
+
`inputs` and `output_type`.
|
752 |
+
|
753 |
+
Args:
|
754 |
+
tool_class (`type`): The class of the tool for which to launch the demo.
|
755 |
+
"""
|
756 |
+
try:
|
757 |
+
import gradio as gr
|
758 |
+
except ImportError:
|
759 |
+
raise ImportError(
|
760 |
+
"Gradio should be installed in order to launch a gradio demo."
|
761 |
+
)
|
762 |
+
|
763 |
+
tool = tool_class()
|
764 |
+
|
765 |
+
def fn(*args, **kwargs):
|
766 |
+
return tool(*args, **kwargs)
|
767 |
+
|
768 |
+
TYPE_TO_COMPONENT_CLASS_MAPPING = {
|
769 |
+
"image": gr.Image,
|
770 |
+
"audio": gr.Audio,
|
771 |
+
"string": gr.Textbox,
|
772 |
+
"integer": gr.Textbox,
|
773 |
+
"number": gr.Textbox,
|
774 |
+
}
|
775 |
+
|
776 |
+
gradio_inputs = []
|
777 |
+
for input_name, input_details in tool_class.inputs.items():
|
778 |
+
input_gradio_component_class = TYPE_TO_COMPONENT_CLASS_MAPPING[
|
779 |
+
input_details["type"]
|
780 |
+
]
|
781 |
+
new_component = input_gradio_component_class(label=input_name)
|
782 |
+
gradio_inputs.append(new_component)
|
783 |
+
|
784 |
+
output_gradio_componentclass = TYPE_TO_COMPONENT_CLASS_MAPPING[
|
785 |
+
tool_class.output_type
|
786 |
+
]
|
787 |
+
gradio_output = output_gradio_componentclass(label=input_name)
|
788 |
+
|
789 |
+
gr.Interface(
|
790 |
+
fn=fn,
|
791 |
+
inputs=gradio_inputs,
|
792 |
+
outputs=gradio_output,
|
793 |
+
title=tool_class.__name__,
|
794 |
+
article=tool.description,
|
795 |
+
).launch()
|
796 |
+
|
797 |
+
|
798 |
+
TOOL_MAPPING = {
|
799 |
+
"python_interpreter": "PythonInterpreterTool",
|
800 |
+
"web_search": "DuckDuckGoSearchTool",
|
801 |
+
}
|
802 |
+
|
803 |
+
|
804 |
+
def load_tool(task_or_repo_id, model_repo_id=None, token=None, **kwargs):
|
805 |
+
"""
|
806 |
+
Main function to quickly load a tool, be it on the Hub or in the Transformers library.
|
807 |
+
|
808 |
+
<Tip warning={true}>
|
809 |
+
|
810 |
+
Loading a tool means that you'll download the tool and execute it locally.
|
811 |
+
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
|
812 |
+
installing a package using pip/npm/apt.
|
813 |
+
|
814 |
+
</Tip>
|
815 |
+
|
816 |
+
Args:
|
817 |
+
task_or_repo_id (`str`):
|
818 |
+
The task for which to load the tool or a repo ID of a tool on the Hub. Tasks implemented in Transformers
|
819 |
+
are:
|
820 |
+
|
821 |
+
- `"document_question_answering"`
|
822 |
+
- `"image_question_answering"`
|
823 |
+
- `"speech_to_text"`
|
824 |
+
- `"text_to_speech"`
|
825 |
+
- `"translation"`
|
826 |
+
|
827 |
+
model_repo_id (`str`, *optional*):
|
828 |
+
Use this argument to use a different model than the default one for the tool you selected.
|
829 |
+
token (`str`, *optional*):
|
830 |
+
The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli
|
831 |
+
login` (stored in `~/.huggingface`).
|
832 |
+
kwargs (additional keyword arguments, *optional*):
|
833 |
+
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
|
834 |
+
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others
|
835 |
+
will be passed along to its init.
|
836 |
+
"""
|
837 |
+
if task_or_repo_id in TOOL_MAPPING:
|
838 |
+
tool_class_name = TOOL_MAPPING[task_or_repo_id]
|
839 |
+
main_module = importlib.import_module("agents")
|
840 |
+
tools_module = main_module
|
841 |
+
tool_class = getattr(tools_module, tool_class_name)
|
842 |
+
return tool_class(model_repo_id, token=token, **kwargs)
|
843 |
+
else:
|
844 |
+
logger.warning_once(
|
845 |
+
f"You're loading a tool from the Hub from {model_repo_id}. Please make sure this is a source that you "
|
846 |
+
f"trust as the code within that tool will be executed on your machine. Always verify the code of "
|
847 |
+
f"the tools that you load. We recommend specifying a `revision` to ensure you're loading the "
|
848 |
+
f"code that you have checked."
|
849 |
+
)
|
850 |
+
return Tool.from_hub(
|
851 |
+
task_or_repo_id, model_repo_id=model_repo_id, token=token, **kwargs
|
852 |
+
)
|
853 |
+
|
854 |
+
|
855 |
+
def add_description(description):
|
856 |
+
"""
|
857 |
+
A decorator that adds a description to a function.
|
858 |
+
"""
|
859 |
+
|
860 |
+
def inner(func):
|
861 |
+
func.description = description
|
862 |
+
func.name = func.__name__
|
863 |
+
return func
|
864 |
+
|
865 |
+
return inner
|
866 |
+
|
867 |
+
|
868 |
+
## Will move to the Hub
|
869 |
+
class EndpointClient:
|
870 |
+
def __init__(self, endpoint_url: str, token: Optional[str] = None):
|
871 |
+
self.headers = {
|
872 |
+
**build_hf_headers(token=token),
|
873 |
+
"Content-Type": "application/json",
|
874 |
+
}
|
875 |
+
self.endpoint_url = endpoint_url
|
876 |
+
|
877 |
+
@staticmethod
|
878 |
+
def encode_image(image):
|
879 |
+
_bytes = io.BytesIO()
|
880 |
+
image.save(_bytes, format="PNG")
|
881 |
+
b64 = base64.b64encode(_bytes.getvalue())
|
882 |
+
return b64.decode("utf-8")
|
883 |
+
|
884 |
+
@staticmethod
|
885 |
+
def decode_image(raw_image):
|
886 |
+
if not is_vision_available():
|
887 |
+
raise ImportError(
|
888 |
+
"This tool returned an image but Pillow is not installed. Please install it (`pip install Pillow`)."
|
889 |
+
)
|
890 |
+
|
891 |
+
from PIL import Image
|
892 |
+
|
893 |
+
b64 = base64.b64decode(raw_image)
|
894 |
+
_bytes = io.BytesIO(b64)
|
895 |
+
return Image.open(_bytes)
|
896 |
+
|
897 |
+
def __call__(
|
898 |
+
self,
|
899 |
+
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
|
900 |
+
params: Optional[Dict] = None,
|
901 |
+
data: Optional[bytes] = None,
|
902 |
+
output_image: bool = False,
|
903 |
+
) -> Any:
|
904 |
+
# Build payload
|
905 |
+
payload = {}
|
906 |
+
if inputs:
|
907 |
+
payload["inputs"] = inputs
|
908 |
+
if params:
|
909 |
+
payload["parameters"] = params
|
910 |
+
|
911 |
+
# Make API call
|
912 |
+
response = get_session().post(
|
913 |
+
self.endpoint_url, headers=self.headers, json=payload, data=data
|
914 |
+
)
|
915 |
+
|
916 |
+
# By default, parse the response for the user.
|
917 |
+
if output_image:
|
918 |
+
return self.decode_image(response.content)
|
919 |
+
else:
|
920 |
+
return response.json()
|
921 |
+
|
922 |
+
|
923 |
+
class ToolCollection:
|
924 |
+
"""
|
925 |
+
Tool collections enable loading all Spaces from a collection in order to be added to the agent's toolbox.
|
926 |
+
|
927 |
+
> [!NOTE]
|
928 |
+
> Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you'd
|
929 |
+
> like for this collection to showcase them.
|
930 |
+
|
931 |
+
Args:
|
932 |
+
collection_slug (str):
|
933 |
+
The collection slug referencing the collection.
|
934 |
+
token (str, *optional*):
|
935 |
+
The authentication token if the collection is private.
|
936 |
+
|
937 |
+
Example:
|
938 |
+
|
939 |
+
```py
|
940 |
+
>>> from transformers import ToolCollection, CodeAgent
|
941 |
+
|
942 |
+
>>> image_tool_collection = ToolCollection(collection_slug="huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
|
943 |
+
>>> agent = CodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
|
944 |
+
|
945 |
+
>>> agent.run("Please draw me a picture of rivers and lakes.")
|
946 |
+
```
|
947 |
+
"""
|
948 |
+
|
949 |
+
def __init__(self, collection_slug: str, token: Optional[str] = None):
|
950 |
+
self._collection = get_collection(collection_slug, token=token)
|
951 |
+
self._hub_repo_ids = {
|
952 |
+
item.item_id for item in self._collection.items if item.item_type == "space"
|
953 |
+
}
|
954 |
+
self.tools = {Tool.from_hub(repo_id) for repo_id in self._hub_repo_ids}
|
955 |
+
|
956 |
+
|
957 |
+
def tool(tool_function: Callable) -> Tool:
|
958 |
+
"""
|
959 |
+
Converts a function into an instance of a Tool subclass.
|
960 |
+
|
961 |
+
Args:
|
962 |
+
tool_function: Your function. Should have type hints for each input and a type hint for the output.
|
963 |
+
Should also have a docstring description including an 'Args:' part where each argument is described.
|
964 |
+
"""
|
965 |
+
parameters = get_json_schema(tool_function)["function"]
|
966 |
+
if "return" not in parameters:
|
967 |
+
raise TypeHintParsingException(
|
968 |
+
"Tool return type not found: make sure your function has a return type hint!"
|
969 |
+
)
|
970 |
+
class_name = f"{parameters['name'].capitalize()}Tool"
|
971 |
+
if parameters["return"]["type"] == "object":
|
972 |
+
parameters["return"]["type"] = "any"
|
973 |
+
|
974 |
+
class SpecificTool(Tool):
|
975 |
+
name = parameters["name"]
|
976 |
+
description = parameters["description"]
|
977 |
+
inputs = parameters["parameters"]["properties"]
|
978 |
+
output_type = parameters["return"]["type"]
|
979 |
+
|
980 |
+
@wraps(tool_function)
|
981 |
+
def forward(self, *args, **kwargs):
|
982 |
+
return tool_function(*args, **kwargs)
|
983 |
+
|
984 |
+
original_signature = inspect.signature(tool_function)
|
985 |
+
new_parameters = [
|
986 |
+
inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD)
|
987 |
+
] + list(original_signature.parameters.values())
|
988 |
+
new_signature = original_signature.replace(parameters=new_parameters)
|
989 |
+
SpecificTool.forward.__signature__ = new_signature
|
990 |
+
SpecificTool.__name__ = class_name
|
991 |
+
return SpecificTool()
|
992 |
+
|
993 |
+
|
994 |
+
HUGGINGFACE_DEFAULT_TOOLS = {}
|
995 |
+
|
996 |
+
|
997 |
+
class Toolbox:
|
998 |
+
"""
|
999 |
+
The toolbox contains all tools that the agent can perform operations with, as well as a few methods to
|
1000 |
+
manage them.
|
1001 |
+
|
1002 |
+
Args:
|
1003 |
+
tools (`List[Tool]`):
|
1004 |
+
The list of tools to instantiate the toolbox with
|
1005 |
+
add_base_tools (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
1006 |
+
Whether to add the tools available within `transformers` to the toolbox.
|
1007 |
+
"""
|
1008 |
+
|
1009 |
+
def __init__(self, tools: List[Tool], add_base_tools: bool = False):
|
1010 |
+
self._tools = {tool.name: tool for tool in tools}
|
1011 |
+
if add_base_tools:
|
1012 |
+
self.add_base_tools()
|
1013 |
+
|
1014 |
+
def add_base_tools(self, add_python_interpreter: bool = False):
|
1015 |
+
global HUGGINGFACE_DEFAULT_TOOLS
|
1016 |
+
if len(HUGGINGFACE_DEFAULT_TOOLS.keys()) == 0:
|
1017 |
+
HUGGINGFACE_DEFAULT_TOOLS = setup_default_tools()
|
1018 |
+
for tool in HUGGINGFACE_DEFAULT_TOOLS.values():
|
1019 |
+
if tool.name != "python_interpreter" or add_python_interpreter:
|
1020 |
+
self.add_tool(tool)
|
1021 |
+
|
1022 |
+
@property
|
1023 |
+
def tools(self) -> Dict[str, Tool]:
|
1024 |
+
"""Get all tools currently in the toolbox"""
|
1025 |
+
return self._tools
|
1026 |
+
|
1027 |
+
def show_tool_descriptions(self, tool_description_template: Optional[str] = None) -> str:
|
1028 |
+
"""
|
1029 |
+
Returns the description of all tools in the toolbox
|
1030 |
+
|
1031 |
+
Args:
|
1032 |
+
tool_description_template (`str`, *optional*):
|
1033 |
+
The template to use to describe the tools. If not provided, the default template will be used.
|
1034 |
+
"""
|
1035 |
+
return "\n".join(
|
1036 |
+
[
|
1037 |
+
get_tool_description_with_args(tool, tool_description_template)
|
1038 |
+
for tool in self._tools.values()
|
1039 |
+
]
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
def add_tool(self, tool: Tool):
|
1043 |
+
"""
|
1044 |
+
Adds a tool to the toolbox
|
1045 |
+
|
1046 |
+
Args:
|
1047 |
+
tool (`Tool`):
|
1048 |
+
The tool to add to the toolbox.
|
1049 |
+
"""
|
1050 |
+
if tool.name in self._tools:
|
1051 |
+
raise KeyError(f"Error: tool '{tool.name}' already exists in the toolbox.")
|
1052 |
+
self._tools[tool.name] = tool
|
1053 |
+
|
1054 |
+
def remove_tool(self, tool_name: str):
|
1055 |
+
"""
|
1056 |
+
Removes a tool from the toolbox
|
1057 |
+
|
1058 |
+
Args:
|
1059 |
+
tool_name (`str`):
|
1060 |
+
The tool to remove from the toolbox.
|
1061 |
+
"""
|
1062 |
+
if tool_name not in self._tools:
|
1063 |
+
raise KeyError(
|
1064 |
+
f"Error: tool {tool_name} not found in toolbox for removal, should be instead one of {list(self._tools.keys())}."
|
1065 |
+
)
|
1066 |
+
del self._tools[tool_name]
|
1067 |
+
|
1068 |
+
def update_tool(self, tool: Tool):
|
1069 |
+
"""
|
1070 |
+
Updates a tool in the toolbox according to its name.
|
1071 |
+
|
1072 |
+
Args:
|
1073 |
+
tool (`Tool`):
|
1074 |
+
The tool to update to the toolbox.
|
1075 |
+
"""
|
1076 |
+
if tool.name not in self._tools:
|
1077 |
+
raise KeyError(
|
1078 |
+
f"Error: tool {tool.name} not found in toolbox for update, should be instead one of {list(self._tools.keys())}."
|
1079 |
+
)
|
1080 |
+
self._tools[tool.name] = tool
|
1081 |
+
|
1082 |
+
def clear_toolbox(self):
|
1083 |
+
"""Clears the toolbox"""
|
1084 |
+
self._tools = {}
|
1085 |
+
|
1086 |
+
# def _load_tools_if_needed(self):
|
1087 |
+
# for name, tool in self._tools.items():
|
1088 |
+
# if not isinstance(tool, Tool):
|
1089 |
+
# task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
|
1090 |
+
# self._tools[name] = load_tool(task_or_repo_id)
|
1091 |
+
|
1092 |
+
def __repr__(self):
|
1093 |
+
toolbox_description = "Toolbox contents:\n"
|
1094 |
+
for tool in self._tools.values():
|
1095 |
+
toolbox_description += f"\t{tool.name}: {tool.description}\n"
|
1096 |
+
return toolbox_description
|
1097 |
+
|
1098 |
+
__all__ = ["AUTHORIZED_TYPES", "Tool", "tool", "load_tool", "launch_gradio_demo", "Toolbox"]
|
types.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import os
|
16 |
+
import pathlib
|
17 |
+
import tempfile
|
18 |
+
import uuid
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from transformers.utils import (
|
23 |
+
is_soundfile_availble,
|
24 |
+
is_torch_available,
|
25 |
+
is_vision_available,
|
26 |
+
)
|
27 |
+
import logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.getLogger(__name__)
|
31 |
+
|
32 |
+
if is_vision_available():
|
33 |
+
from PIL import Image
|
34 |
+
from PIL.Image import Image as ImageType
|
35 |
+
else:
|
36 |
+
ImageType = object
|
37 |
+
|
38 |
+
if is_torch_available():
|
39 |
+
import torch
|
40 |
+
from torch import Tensor
|
41 |
+
else:
|
42 |
+
Tensor = object
|
43 |
+
|
44 |
+
if is_soundfile_availble():
|
45 |
+
import soundfile as sf
|
46 |
+
|
47 |
+
|
48 |
+
class AgentType:
|
49 |
+
"""
|
50 |
+
Abstract class to be reimplemented to define types that can be returned by agents.
|
51 |
+
|
52 |
+
These objects serve three purposes:
|
53 |
+
|
54 |
+
- They behave as they were the type they're meant to be, e.g., a string for text, a PIL.Image for images
|
55 |
+
- They can be stringified: str(object) in order to return a string defining the object
|
56 |
+
- They should be displayed correctly in ipython notebooks/colab/jupyter
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, value):
|
60 |
+
self._value = value
|
61 |
+
|
62 |
+
def __str__(self):
|
63 |
+
return self.to_string()
|
64 |
+
|
65 |
+
def to_raw(self):
|
66 |
+
logger.error(
|
67 |
+
"This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable"
|
68 |
+
)
|
69 |
+
return self._value
|
70 |
+
|
71 |
+
def to_string(self) -> str:
|
72 |
+
logger.error(
|
73 |
+
"This is a raw AgentType of unknown type. Display in notebooks and string conversion will be unreliable"
|
74 |
+
)
|
75 |
+
return str(self._value)
|
76 |
+
|
77 |
+
|
78 |
+
class AgentText(AgentType, str):
|
79 |
+
"""
|
80 |
+
Text type returned by the agent. Behaves as a string.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def to_raw(self):
|
84 |
+
return self._value
|
85 |
+
|
86 |
+
def to_string(self):
|
87 |
+
return str(self._value)
|
88 |
+
|
89 |
+
|
90 |
+
class AgentImage(AgentType, ImageType):
|
91 |
+
"""
|
92 |
+
Image type returned by the agent. Behaves as a PIL.Image.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def __init__(self, value):
|
96 |
+
AgentType.__init__(self, value)
|
97 |
+
ImageType.__init__(self)
|
98 |
+
|
99 |
+
if not is_vision_available():
|
100 |
+
raise ImportError("PIL must be installed in order to handle images.")
|
101 |
+
|
102 |
+
self._path = None
|
103 |
+
self._raw = None
|
104 |
+
self._tensor = None
|
105 |
+
|
106 |
+
if isinstance(value, ImageType):
|
107 |
+
self._raw = value
|
108 |
+
elif isinstance(value, (str, pathlib.Path)):
|
109 |
+
self._path = value
|
110 |
+
elif isinstance(value, torch.Tensor):
|
111 |
+
self._tensor = value
|
112 |
+
elif isinstance(value, np.ndarray):
|
113 |
+
self._tensor = torch.from_numpy(value)
|
114 |
+
else:
|
115 |
+
raise TypeError(
|
116 |
+
f"Unsupported type for {self.__class__.__name__}: {type(value)}"
|
117 |
+
)
|
118 |
+
|
119 |
+
def _ipython_display_(self, include=None, exclude=None):
|
120 |
+
"""
|
121 |
+
Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...)
|
122 |
+
"""
|
123 |
+
from IPython.display import Image, display
|
124 |
+
|
125 |
+
display(Image(self.to_string()))
|
126 |
+
|
127 |
+
def to_raw(self):
|
128 |
+
"""
|
129 |
+
Returns the "raw" version of that object. In the case of an AgentImage, it is a PIL.Image.
|
130 |
+
"""
|
131 |
+
if self._raw is not None:
|
132 |
+
return self._raw
|
133 |
+
|
134 |
+
if self._path is not None:
|
135 |
+
self._raw = Image.open(self._path)
|
136 |
+
return self._raw
|
137 |
+
|
138 |
+
if self._tensor is not None:
|
139 |
+
array = self._tensor.cpu().detach().numpy()
|
140 |
+
return Image.fromarray((255 - array * 255).astype(np.uint8))
|
141 |
+
|
142 |
+
def to_string(self):
|
143 |
+
"""
|
144 |
+
Returns the stringified version of that object. In the case of an AgentImage, it is a path to the serialized
|
145 |
+
version of the image.
|
146 |
+
"""
|
147 |
+
if self._path is not None:
|
148 |
+
return self._path
|
149 |
+
|
150 |
+
if self._raw is not None:
|
151 |
+
directory = tempfile.mkdtemp()
|
152 |
+
self._path = os.path.join(directory, str(uuid.uuid4()) + ".png")
|
153 |
+
self._raw.save(self._path, format="png")
|
154 |
+
return self._path
|
155 |
+
|
156 |
+
if self._tensor is not None:
|
157 |
+
array = self._tensor.cpu().detach().numpy()
|
158 |
+
|
159 |
+
# There is likely simpler than load into image into save
|
160 |
+
img = Image.fromarray((255 - array * 255).astype(np.uint8))
|
161 |
+
|
162 |
+
directory = tempfile.mkdtemp()
|
163 |
+
self._path = os.path.join(directory, str(uuid.uuid4()) + ".png")
|
164 |
+
img.save(self._path, format="png")
|
165 |
+
|
166 |
+
return self._path
|
167 |
+
|
168 |
+
def save(self, output_bytes, format: str = None, **params):
|
169 |
+
"""
|
170 |
+
Saves the image to a file.
|
171 |
+
Args:
|
172 |
+
output_bytes (bytes): The output bytes to save the image to.
|
173 |
+
format (str): The format to use for the output image. The format is the same as in PIL.Image.save.
|
174 |
+
**params: Additional parameters to pass to PIL.Image.save.
|
175 |
+
"""
|
176 |
+
img = self.to_raw()
|
177 |
+
img.save(output_bytes, format=format, **params)
|
178 |
+
|
179 |
+
|
180 |
+
class AgentAudio(AgentType, str):
|
181 |
+
"""
|
182 |
+
Audio type returned by the agent.
|
183 |
+
"""
|
184 |
+
|
185 |
+
def __init__(self, value, samplerate=16_000):
|
186 |
+
super().__init__(value)
|
187 |
+
|
188 |
+
if not is_soundfile_availble():
|
189 |
+
raise ImportError("soundfile must be installed in order to handle audio.")
|
190 |
+
|
191 |
+
self._path = None
|
192 |
+
self._tensor = None
|
193 |
+
|
194 |
+
self.samplerate = samplerate
|
195 |
+
if isinstance(value, (str, pathlib.Path)):
|
196 |
+
self._path = value
|
197 |
+
elif is_torch_available() and isinstance(value, torch.Tensor):
|
198 |
+
self._tensor = value
|
199 |
+
elif isinstance(value, tuple):
|
200 |
+
self.samplerate = value[0]
|
201 |
+
if isinstance(value[1], np.ndarray):
|
202 |
+
self._tensor = torch.from_numpy(value[1])
|
203 |
+
else:
|
204 |
+
self._tensor = torch.tensor(value[1])
|
205 |
+
else:
|
206 |
+
raise ValueError(f"Unsupported audio type: {type(value)}")
|
207 |
+
|
208 |
+
def _ipython_display_(self, include=None, exclude=None):
|
209 |
+
"""
|
210 |
+
Displays correctly this type in an ipython notebook (ipython, colab, jupyter, ...)
|
211 |
+
"""
|
212 |
+
from IPython.display import Audio, display
|
213 |
+
|
214 |
+
display(Audio(self.to_string(), rate=self.samplerate))
|
215 |
+
|
216 |
+
def to_raw(self):
|
217 |
+
"""
|
218 |
+
Returns the "raw" version of that object. It is a `torch.Tensor` object.
|
219 |
+
"""
|
220 |
+
if self._tensor is not None:
|
221 |
+
return self._tensor
|
222 |
+
|
223 |
+
if self._path is not None:
|
224 |
+
tensor, self.samplerate = sf.read(self._path)
|
225 |
+
self._tensor = torch.tensor(tensor)
|
226 |
+
return self._tensor
|
227 |
+
|
228 |
+
def to_string(self):
|
229 |
+
"""
|
230 |
+
Returns the stringified version of that object. In the case of an AgentAudio, it is a path to the serialized
|
231 |
+
version of the audio.
|
232 |
+
"""
|
233 |
+
if self._path is not None:
|
234 |
+
return self._path
|
235 |
+
|
236 |
+
if self._tensor is not None:
|
237 |
+
directory = tempfile.mkdtemp()
|
238 |
+
self._path = os.path.join(directory, str(uuid.uuid4()) + ".wav")
|
239 |
+
sf.write(self._path, self._tensor, samplerate=self.samplerate)
|
240 |
+
return self._path
|
241 |
+
|
242 |
+
|
243 |
+
AGENT_TYPE_MAPPING = {"string": AgentText, "image": AgentImage, "audio": AgentAudio}
|
244 |
+
INSTANCE_TYPE_MAPPING = {str: AgentText, ImageType: AgentImage}
|
245 |
+
|
246 |
+
if is_torch_available():
|
247 |
+
INSTANCE_TYPE_MAPPING[Tensor] = AgentAudio
|
248 |
+
|
249 |
+
|
250 |
+
def handle_agent_inputs(*args, **kwargs):
|
251 |
+
args = [(arg.to_raw() if isinstance(arg, AgentType) else arg) for arg in args]
|
252 |
+
kwargs = {
|
253 |
+
k: (v.to_raw() if isinstance(v, AgentType) else v) for k, v in kwargs.items()
|
254 |
+
}
|
255 |
+
return args, kwargs
|
256 |
+
|
257 |
+
|
258 |
+
def handle_agent_outputs(output, output_type=None):
|
259 |
+
if output_type in AGENT_TYPE_MAPPING:
|
260 |
+
# If the class has defined outputs, we can map directly according to the class definition
|
261 |
+
decoded_outputs = AGENT_TYPE_MAPPING[output_type](output)
|
262 |
+
return decoded_outputs
|
263 |
+
else:
|
264 |
+
# If the class does not have defined output, then we map according to the type
|
265 |
+
for _k, _v in INSTANCE_TYPE_MAPPING.items():
|
266 |
+
if isinstance(output, _k):
|
267 |
+
return _v(output)
|
268 |
+
return output
|
269 |
+
|
270 |
+
__all__ = ["AgentType", "AgentImage", "AgentText", "AgentAudio"]
|