File size: 21,593 Bytes
b97f2de
 
 
 
 
 
 
e76df21
b97f2de
 
 
 
 
e76df21
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a379d16
e76df21
b97f2de
a32e93b
b97f2de
a32e93b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bea4a88
b97f2de
 
 
 
 
 
 
 
 
a32e93b
b97f2de
 
 
 
 
 
 
 
 
4ffcfc1
 
 
 
 
 
718b72f
 
4ffcfc1
 
 
b97f2de
 
 
e76df21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97f2de
 
 
 
4ffcfc1
 
b97f2de
 
 
 
 
4ffcfc1
 
 
 
 
cd1cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
b97f2de
cd1cb3b
 
 
b97f2de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd1cb3b
 
b97f2de
 
cd1cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b97f2de
cd1cb3b
a379d16
cd1cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3921eec
cd1cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cca9336
cd1cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d0faa4
cd1cb3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63edd5
4ffcfc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional

import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr

from scripts.reformulator import prepare_response
from scripts.run_agents import (
    get_single_file_description,
    get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
    ArchiveSearchTool,
    FinderTool,
    FindNextTool,
    PageDownTool,
    PageUpTool,
    SimpleTextBrowser,
    VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm

from smolagents import (
    CodeAgent,
    HfApiModel,
    LiteLLMModel,
    Model,
    ToolCallingAgent,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types

from smolagents import Tool


class GoogleSearchTool(Tool):
    name = "web_search"
    description = """Performs a google web search for your query then returns a string of the top search results."""
    inputs = {
        "query": {"type": "string", "description": "The search query to perform."},
        "filter_year": {
            "type": "integer",
            "description": "Optionally restrict results to a certain year",
            "nullable": True,
        },
    }
    output_type = "string"

    def __init__(self):
        super().__init__(self)
        import os

        self.serpapi_key = os.getenv("SERPER_API_KEY")

    def forward(self, query: str, filter_year: Optional[int] = None) -> str:
        import requests

        if self.serpapi_key is None:
            raise ValueError("Missing SerpAPI key. Make sure you have 'SERPER_API_KEY' in your env variables.")

        params = {
            "engine": "google",
            "q": query,
            "api_key": self.serpapi_key,
            "google_domain": "google.com",
        }

        headers = {
        'X-API-KEY': self.serpapi_key,
        'Content-Type': 'application/json'
        }

        if filter_year is not None:
            params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}"

        response = requests.request("POST", "https://google.serper.dev/search", headers=headers, data=json.dumps(params))


        if response.status_code == 200:
            results = response.json()
        else:
            raise ValueError(response.json())

        if "organic" not in results.keys():
            print("REZZZ", results.keys())
            if filter_year is not None:
                raise Exception(
                    f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year."
                )
            else:
                raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.")
        if len(results["organic"]) == 0:
            year_filter_message = f" with filter year={filter_year}" if filter_year is not None else ""
            return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter."

        web_snippets = []
        if "organic" in results:
            for idx, page in enumerate(results["organic"]):
                date_published = ""
                if "date" in page:
                    date_published = "\nDate published: " + page["date"]

                source = ""
                if "source" in page:
                    source = "\nSource: " + page["source"]

                snippet = ""
                if "snippet" in page:
                    snippet = "\n" + page["snippet"]

                redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}"

                redacted_version = redacted_version.replace("Your browser can't play this video.", "")
                web_snippets.append(redacted_version)

        return "## Search Results\n" + "\n\n".join(web_snippets)

# web_search = GoogleSearchTool()

# print(web_search(query="Donald Trump news"))
# quit()
AUTHORIZED_IMPORTS = [
    "requests",
    "zipfile",
    "os",
    "pandas",
    "numpy",
    "sympy",
    "json",
    "bs4",
    "pubchempy",
    "xml",
    "yahoo_finance",
    "Bio",
    "sklearn",
    "scipy",
    "pydub",
    "io",
    "PIL",
    "chess",
    "PyPDF2",
    "pptx",
    "torch",
    "datetime",
    "fractions",
    "csv",
]
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))

append_answer_lock = threading.Lock()

custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}

user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"

BROWSER_CONFIG = {
    "viewport_size": 1024 * 5,
    "downloads_folder": "downloads_folder",
    "request_kwargs": {
        "headers": {"User-Agent": user_agent},
        "timeout": 300,
    },
    "serpapi_key": os.getenv("SERPAPI_API_KEY"),
}

os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)

model = HfApiModel(
    custom_role_conversions=custom_role_conversions,
)

text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)

browser = SimpleTextBrowser(**BROWSER_CONFIG)

WEB_TOOLS = [
    GoogleSearchTool(),
    VisitTool(browser),
    PageUpTool(browser),
    PageDownTool(browser),
    FinderTool(browser),
    FindNextTool(browser),
    ArchiveSearchTool(browser),
    TextInspectorTool(model, text_limit),
]

# Agent creation in a factory function
def create_agent():
    """Creates a fresh agent instance for each session"""
    return CodeAgent(
        model=model,
        tools=[visualizer] + WEB_TOOLS,
        max_steps=10,
        verbosity_level=1,
        additional_authorized_imports=AUTHORIZED_IMPORTS,
        planning_interval=4,
    )

document_inspection_tool = TextInspectorTool(model, 20000)

def stream_to_gradio(
    agent,
    task: str,
    reset_agent_memory: bool = False,
    additional_args: Optional[dict] = None,
):
    """Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
    for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
        for message in pull_messages_from_step(
            step_log,
        ):
            yield message

    final_answer = step_log  # Last log is the run's final_answer
    final_answer = handle_agent_output_types(final_answer)

    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
        )
    else:
        yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")


class GradioUI:
    """A one-line interface to launch your agent in Gradio"""

    def __init__(self, file_upload_folder: str | None = None):
        
        self.file_upload_folder = file_upload_folder
        if self.file_upload_folder is not None:
            if not os.path.exists(file_upload_folder):
                os.mkdir(file_upload_folder)

    def interact_with_agent(self, prompt, messages, session_state):
        # Get or create session-specific agent
        if 'agent' not in session_state:
            session_state['agent'] = create_agent()

        # Adding monitoring
        try:
            # log the existence of agent memory
            has_memory = hasattr(session_state['agent'], 'memory')
            print(f"Agent has memory: {has_memory}")
            if has_memory:
                print(f"Memory type: {type(session_state['agent'].memory)}")
                
            messages.append(gr.ChatMessage(role="user", content=prompt))
            yield messages
            
            for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
                messages.append(msg)
                yield messages
            yield messages
        except Exception as e:
            print(f"Error in interaction: {str(e)}")
            raise

    def upload_file(
        self,
        file,
        file_uploads_log,
        allowed_file_types=[
            "application/pdf",
            "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
            "text/plain",
        ],
    ):
        """
        Handle file uploads, default allowed types are .pdf, .docx, and .txt
        """
        if file is None:
            return gr.Textbox("No file uploaded", visible=True), file_uploads_log

        try:
            mime_type, _ = mimetypes.guess_type(file.name)
        except Exception as e:
            return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log

        if mime_type not in allowed_file_types:
            return gr.Textbox("File type disallowed", visible=True), file_uploads_log

        # Sanitize file name
        original_name = os.path.basename(file.name)
        sanitized_name = re.sub(
            r"[^\w\-.]", "_", original_name
        )  # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores

        type_to_ext = {}
        for ext, t in mimetypes.types_map.items():
            if t not in type_to_ext:
                type_to_ext[t] = ext

        # Ensure the extension correlates to the mime type
        sanitized_name = sanitized_name.split(".")[:-1]
        sanitized_name.append("" + type_to_ext[mime_type])
        sanitized_name = "".join(sanitized_name)

        # Save the uploaded file to the specified folder
        file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
        shutil.copy(file.name, file_path)

        return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]

    def log_user_message(self, text_input, file_uploads_log):
        return (
            text_input
            + (
                f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
                if len(file_uploads_log) > 0
                else ""
            ),
            gr.Textbox(value="", interactive=False, placeholder="Please wait while Steps are getting populated"),
            gr.Button(interactive=False)
        )

    def detect_device(self, request: gr.Request):
        # Check whether the user device is a mobile or a computer
    
        if not request:
            return "Unknown device"
        # Method 1: Check sec-ch-ua-mobile header
        is_mobile_header = request.headers.get('sec-ch-ua-mobile')
        if is_mobile_header:
            return "Mobile" if '?1' in is_mobile_header else "Desktop"
    
        # Method 2: Check user-agent string
        user_agent = request.headers.get('user-agent', '').lower()
        mobile_keywords = ['android', 'iphone', 'ipad', 'mobile', 'phone']
    
        if any(keyword in user_agent for keyword in mobile_keywords):
            return "Mobile"
    
        # Method 3: Check platform
        platform = request.headers.get('sec-ch-ua-platform', '').lower()
        if platform:
            if platform in ['"android"', '"ios"']:
                return "Mobile"
            elif platform in ['"windows"', '"macos"', '"linux"']:
                return "Desktop"
    
        # Default case if no clear indicators
        return "Desktop" 
    
    def launch(self, **kwargs):

        with gr.Blocks(theme="ocean", fill_height=True) as demo:
            # Different layouts for mobile and computer devices
            @gr.render()
            def layout(request: gr.Request):
                device = self.detect_device(request)
                print(f"device - {device}")
                # Render layout with sidebar 
                if device == "Desktop":
                    with gr.Blocks(fill_height=True,) as sidebar_demo:
                        with gr.Sidebar():
                            gr.Markdown("""# open Deep Research - free the AI agents!
                            
                OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
                
                However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
                
                You can try a simplified version here (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research).<br><br>""")
                            with gr.Group():
                                gr.Markdown("**Your request**", container=True)
                                text_input = gr.Textbox(lines=3, label="Your request", container=False, placeholder="Enter your prompt here and press Shift+Enter or press the button")
                                launch_research_btn = gr.Button("Run", variant="primary")

                            # If an upload folder is provided, enable the upload feature
                            if self.file_upload_folder is not None:
                                upload_file = gr.File(label="Upload a file")
                                upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
                                upload_file.change(
                                    self.upload_file,
                                    [upload_file, file_uploads_log],
                                    [upload_status, file_uploads_log],
                                )
                                    
                            gr.HTML("<br><br><h4><center>Powered by:</center></h4>")
                            with gr.Row():
                                gr.HTML("""<div style="display: flex; align-items: center; gap: 8px; font-family: system-ui, -apple-system, sans-serif;">
                        <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png" style="width: 32px; height: 32px; object-fit: contain;" alt="logo">
                        <a target="_blank" href="https://github.com/huggingface/smolagents"><b>huggingface/smolagents</b></a>
                        </div>""")                        

                        # Add session state to store session-specific data
                        session_state = gr.State({})  # Initialize empty state for each session
                        stored_messages = gr.State([])
                        file_uploads_log = gr.State([])
                        chatbot = gr.Chatbot(
                            label="open-Deep-Research",
                            type="messages",
                            avatar_images=(
                                None,
                                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                            ),
                            resizeable=False,
                            scale=1,
                            elem_id="my-chatbot"
                        )

                        text_input.submit(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(self.interact_with_agent,
                            # Include session_state in function calls
                            [stored_messages, chatbot, session_state],
                            [chatbot]
                        ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
                              None, 
                              [text_input, launch_research_btn])
                        launch_research_btn.click(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(self.interact_with_agent,
                            # Include session_state in function calls
                            [stored_messages, chatbot, session_state],
                            [chatbot]
                        ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
                              None, 
                              [text_input, launch_research_btn])
                        
                # Render simple layout
                else:
                    with gr.Blocks(fill_height=True,) as simple_demo:
                        gr.Markdown("""# open Deep Research - free the AI agents!
            _Built with [smolagents](https://github.com/huggingface/smolagents)_
            
            OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
            
            However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
            
            You can try a simplified version below (uses `Qwen-Coder-32B` instead of `o1`, so much less powerful than the original open-Deep-Research)πŸ‘‡""")
                        # Add session state to store session-specific data
                        session_state = gr.State({})  # Initialize empty state for each session
                        stored_messages = gr.State([])
                        file_uploads_log = gr.State([])
                        chatbot = gr.Chatbot(
                            label="open-Deep-Research",
                            type="messages",
                            avatar_images=(
                                None,
                                "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
                            ),
                            resizeable=True,
                            scale=1,
                        )
                        # If an upload folder is provided, enable the upload feature
                        if self.file_upload_folder is not None:
                            upload_file = gr.File(label="Upload a file")
                            upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
                            upload_file.change(
                                self.upload_file,
                                [upload_file, file_uploads_log],
                                [upload_status, file_uploads_log],
                            )
                        text_input = gr.Textbox(lines=1, label="Your request", placeholder="Enter your prompt here and press the button")
                        launch_research_btn = gr.Button("Run", variant="primary",)
                        
                        text_input.submit(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(self.interact_with_agent,
                            # Include session_state in function calls
                            [stored_messages, chatbot, session_state],
                            [chatbot]
                        ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
                              None, 
                              [text_input, launch_research_btn])
                        launch_research_btn.click(
                            self.log_user_message,
                            [text_input, file_uploads_log],
                            [stored_messages, text_input, launch_research_btn],
                        ).then(self.interact_with_agent,
                            # Include session_state in function calls
                            [stored_messages, chatbot, session_state],
                            [chatbot]
                        ).then(lambda : (gr.Textbox(interactive=True, placeholder="Enter your prompt here and press the button"), gr.Button(interactive=True)),
                              None, 
                              [text_input, launch_research_btn])
            
        demo.launch(debug=True, **kwargs)

GradioUI().launch()