m-ric's picture
m-ric HF staff
Start agent
b97f2de
raw
history blame
6.03 kB
import base64
import json
import mimetypes
import os
import uuid
from io import BytesIO
from typing import Optional
import requests
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from PIL import Image
from transformers import AutoProcessor
from smolagents import Tool, tool
load_dotenv(override=True)
idefics_processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-chatty")
def process_images_and_text(image_path, query, client):
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": query},
],
},
]
prompt_with_template = idefics_processor.apply_chat_template(messages, add_generation_prompt=True)
# load images from local directory
# encode images to strings which can be sent to the endpoint
def encode_local_image(image_path):
# load image
image = Image.open(image_path).convert("RGB")
# Convert the image to a base64 string
buffer = BytesIO()
image.save(buffer, format="JPEG") # Use the appropriate format (e.g., JPEG, PNG)
base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
# add string formatting required by the endpoint
image_string = f"data:image/jpeg;base64,{base64_image}"
return image_string
image_string = encode_local_image(image_path)
prompt_with_images = prompt_with_template.replace("<image>", "![]({}) ").format(image_string)
payload = {
"inputs": prompt_with_images,
"parameters": {
"return_full_text": False,
"max_new_tokens": 200,
},
}
return json.loads(client.post(json=payload).decode())[0]
# Function to encode the image
def encode_image(image_path):
if image_path.startswith("http"):
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
request_kwargs = {
"headers": {"User-Agent": user_agent},
"stream": True,
}
# Send a HTTP request to the URL
response = requests.get(image_path, **request_kwargs)
response.raise_for_status()
content_type = response.headers.get("content-type", "")
extension = mimetypes.guess_extension(content_type)
if extension is None:
extension = ".download"
fname = str(uuid.uuid4()) + extension
download_path = os.path.abspath(os.path.join("downloads", fname))
with open(download_path, "wb") as fh:
for chunk in response.iter_content(chunk_size=512):
fh.write(chunk)
image_path = download_path
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"}
def resize_image(image_path):
img = Image.open(image_path)
width, height = img.size
img = img.resize((int(width / 2), int(height / 2)))
new_image_path = f"resized_{image_path}"
img.save(new_image_path)
return new_image_path
class VisualQATool(Tool):
name = "visualizer"
description = "A tool that can answer questions about attached images."
inputs = {
"image_path": {
"description": "The path to the image on which to answer the question",
"type": "string",
},
"question": {"description": "the question to answer", "type": "string", "nullable": True},
}
output_type = "string"
client = InferenceClient("HuggingFaceM4/idefics2-8b-chatty")
def forward(self, image_path: str, question: Optional[str] = None) -> str:
output = ""
add_note = False
if not question:
add_note = True
question = "Please write a detailed caption for this image."
try:
output = process_images_and_text(image_path, question, self.client)
except Exception as e:
print(e)
if "Payload Too Large" in str(e):
new_image_path = resize_image(image_path)
output = process_images_and_text(new_image_path, question, self.client)
if add_note:
output = (
f"You did not provide a particular question, so here is a detailed caption for the image: {output}"
)
return output
@tool
def visualizer(image_path: str, question: Optional[str] = None) -> str:
"""A tool that can answer questions about attached images.
Args:
image_path: The path to the image on which to answer the question. This should be a local path to downloaded image.
question: The question to answer.
"""
add_note = False
if not question:
add_note = True
question = "Please write a detailed caption for this image."
if not isinstance(image_path, str):
raise Exception("You should provide at least `image_path` string argument to this tool!")
mime_type, _ = mimetypes.guess_type(image_path)
base64_image = encode_image(image_path)
payload = {
"model": "gpt-4o",
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{"type": "image_url", "image_url": {"url": f"data:{mime_type};base64,{base64_image}"}},
],
}
],
"max_tokens": 1000,
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
try:
output = response.json()["choices"][0]["message"]["content"]
except Exception:
raise Exception(f"Response format unexpected: {response.json()}")
if add_note:
output = f"You did not provide a particular question, so here is a detailed caption for the image: {output}"
return output