import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm
from smolagents import (
CodeAgent,
HfApiModel,
LiteLLMModel,
Model,
ToolCallingAgent,
)
from smolagents.agent_types import AgentText, AgentImage, AgentAudio
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
from smolagents import Tool
class GoogleSearchTool(Tool):
name = "web_search"
description = """Performs a google web search for your query then returns a string of the top search results."""
inputs = {
"query": {"type": "string", "description": "The search query to perform."},
"filter_year": {
"type": "integer",
"description": "Optionally restrict results to a certain year",
"nullable": True,
},
}
output_type = "string"
def __init__(self):
super().__init__(self)
import os
self.serpapi_key = os.getenv("SERPER_API_KEY")
def forward(self, query: str, filter_year: Optional[int] = None) -> str:
import requests
if self.serpapi_key is None:
raise ValueError("Missing SerpAPI key. Make sure you have 'SERPER_API_KEY' in your env variables.")
params = {
"engine": "google",
"q": query,
"api_key": self.serpapi_key,
"google_domain": "google.com",
}
headers = {
'X-API-KEY': self.serpapi_key,
'Content-Type': 'application/json'
}
if filter_year is not None:
params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}"
response = requests.request("POST", "https://google.serper.dev/search", headers=headers, data=json.dumps(params))
if response.status_code == 200:
results = response.json()
else:
raise ValueError(response.json())
if "organic" not in results.keys():
print("REZZZ", results.keys())
if filter_year is not None:
raise Exception(
f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year."
)
else:
raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.")
if len(results["organic"]) == 0:
year_filter_message = f" with filter year={filter_year}" if filter_year is not None else ""
return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter."
web_snippets = []
if "organic" in results:
for idx, page in enumerate(results["organic"]):
date_published = ""
if "date" in page:
date_published = "\nDate published: " + page["date"]
source = ""
if "source" in page:
source = "\nSource: " + page["source"]
snippet = ""
if "snippet" in page:
snippet = "\n" + page["snippet"]
redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}"
redacted_version = redacted_version.replace("Your browser can't play this video.", "")
web_snippets.append(redacted_version)
return "## Search Results\n" + "\n\n".join(web_snippets)
# web_search = GoogleSearchTool()
# print(web_search(query="Donald Trump news"))
# quit()
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
model = LiteLLMModel(
"gpt-4o",
custom_role_conversions=custom_role_conversions,
api_key=os.getenv("OPENAI_API_KEY")
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
GoogleSearchTool(),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
# Agent creation in a factory function
def create_agent():
"""Creates a fresh agent instance for each session"""
return CodeAgent(
model=model,
tools=[visualizer] + WEB_TOOLS,
max_steps=10,
verbosity_level=1,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
)
document_inspection_tool = TextInspectorTool(model, 20000)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, file_upload_folder: str | None = None):
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages, session_state):
# Get or create session-specific agent
if 'agent' not in session_state:
session_state['agent'] = create_agent()
# Adding monitoring
try:
# log the existence of agent memory
has_memory = hasattr(session_state['agent'], 'memory')
print(f"Agent has memory: {has_memory}")
if has_memory:
print(f"Memory type: {type(session_state['agent'].memory)}")
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(session_state['agent'], task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
except Exception as e:
print(f"Error in interaction: {str(e)}")
raise
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Ensure the extension correlates to the mime type
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
gr.Textbox(value="", interactive=False, placeholder="Please wait while Steps are getting populated"),
gr.Button(interactive=False)
)
def detect_device(self, request: gr.Request):
# Check whether the user device is a mobile or a computer
if not request:
return "Unknown device"
# Method 1: Check sec-ch-ua-mobile header
is_mobile_header = request.headers.get('sec-ch-ua-mobile')
if is_mobile_header:
return "Mobile" if '?1' in is_mobile_header else "Desktop"
# Method 2: Check user-agent string
user_agent = request.headers.get('user-agent', '').lower()
mobile_keywords = ['android', 'iphone', 'ipad', 'mobile', 'phone']
if any(keyword in user_agent for keyword in mobile_keywords):
return "Mobile"
# Method 3: Check platform
platform = request.headers.get('sec-ch-ua-platform', '').lower()
if platform:
if platform in ['"android"', '"ios"']:
return "Mobile"
elif platform in ['"windows"', '"macos"', '"linux"']:
return "Desktop"
# Default case if no clear indicators
return "Desktop"
def launch(self, **kwargs):
with gr.Blocks(theme="ocean", fill_height=True) as demo:
# Different layouts for mobile and computer devices
@gr.render()
def layout(request: gr.Request):
device = self.detect_device(request)
print(f"device - {device}")
# Render layout with sidebar
if device == "Desktop":
with gr.Blocks(fill_height=True,) as sidebar_demo:
with gr.Sidebar():
gr.Markdown("""# open Deep Research - free the AI agents!
OpenAI just published [Deep Research](https://openai.com/index/introducing-deep-research/), a very nice assistant that can perform deep searches on the web to answer user questions.
However, their agent has a huge downside: it's not open. So we've started a 24-hour rush to replicate and open-source it. Our resulting [open-Deep-Research agent](https://github.com/huggingface/smolagents/tree/main/examples/open_deep_research) took the #1 rank of any open submission on the GAIA leaderboard! ✨
You can try a simplified version here.
""")
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(lines=3, label="Your request", container=False, placeholder="Enter your prompt here and press Shift+Enter or press the button")
launch_research_btn = gr.Button("Run", variant="primary")
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
gr.HTML("