File size: 4,110 Bytes
985ef3e
 
 
 
 
 
 
 
 
22f7397
 
 
 
 
 
7bf4167
22f7397
 
7c5f9b0
 
 
 
 
22f7397
 
 
 
 
 
 
 
 
 
7bf4167
 
 
fc74e8d
 
 
 
 
955747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc74e8d
 
 
955747f
 
 
 
 
 
 
 
22f7397
 
 
fc74e8d
955747f
fc74e8d
955747f
05560e1
fc74e8d
955747f
 
 
05560e1
 
fc74e8d
955747f
05560e1
fc74e8d
955747f
7bf4167
 
 
22f7397
 
7bf4167
 
 
 
 
 
 
 
 
 
 
 
 
 
22f7397
955747f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f7397
 
 
 
 
 
7bf4167
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
os.system("pip uninstall -y gradio")
os.system("pip install --upgrade gradio")






from pathlib import Path
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
import uvicorn
import gradio as gr
from datetime import datetime
import sys



gr.set_static_paths(paths=["static/"])



# create a FastAPI app
app = FastAPI()

# create a static directory to store the static files
static_dir = Path('./static')
static_dir.mkdir(parents=True, exist_ok=True)

# mount FastAPI StaticFiles server
app.mount("/static", StaticFiles(directory=static_dir), name="static")

# Gradio stuff



import datamapplot
import numpy as np
import requests
import io
import pandas as pd
from pyalex import Works, Authors, Sources, Institutions, Concepts, Publishers, Funders
from itertools import chain
from compress_pickle import load, dump

def query_records(search_term):
    def invert_abstract(inv_index):
        if inv_index is not None:
            l_inv = [(w, p) for w, pos in inv_index.items() for p in pos]
            return " ".join(map(lambda x: x[0], sorted(l_inv, key=lambda x: x[1])))
        else:
            return ' '

    # Fetch records based on the search term
    query = Works().search_filter(abstract=search_term)

    records = []
    for record in chain(*query.paginate(per_page=200)):
        records.append(record)

    records_df = pd.DataFrame(records)
    records_df['abstract'] = [invert_abstract(t) for t in records_df['abstract_inverted_index']]
    
    return records_df




def predict(text_input, progress=gr.Progress()):
    
    # get data.
    records_df = query_records(text_input)
    print(records_df)
    
    
    
    file_name = f"{datetime.utcnow().strftime('%s')}.html"
    file_path = static_dir / file_name
    print(file_path)
 
   #
    
    progress(0.7, desc="Loading hover data...")

    plot = datamapplot.create_interactive_plot(
        basedata_df[['x','y']].values,
        np.array(basedata_df['cluster_1_labels']),
        hover_text=[str(ix) + ', ' + str(row['parsed_publication']) + str(row['title']) for ix, row in basedata_df.iterrows()],
        font_family="Roboto Condensed",
    )

    progress(0.9, desc="Saving plot...")
    plot.save(file_path)

    progress(1.0, desc="Done!")
    iframe = f"""<iframe src="/static/{file_name}" width="100%" height="500px"></iframe>"""
    link = f'<a href="/static/{file_name}" target="_blank">{file_name}</a>'
    return link, iframe

with gr.Blocks() as block:
    gr.Markdown("""
## Gradio + FastAPI + Static Server
This is a demo of how to use Gradio with FastAPI and a static server.
The Gradio app generates dynamic HTML files and stores them in a static directory. FastAPI serves the static files.
""")
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(label="Name")
            markdown = gr.Markdown(label="Output Box")
            new_btn = gr.Button("New")
        with gr.Column():
            html = gr.HTML(label="HTML preview", show_label=True)

    new_btn.click(fn=predict, inputs=[text_input], outputs=[markdown, html])




def setup_basemap_data():
    # get data.
    print("getting basemap data...")
    basedata_file= requests.get(
        "https://www.maxnoichl.eu/full/oa_project_on_scimap_background_data/100k_filtered_OA_sample_cluster_and_positions.bz"
    )
    # Write the response content to a .bz file in the static directory
    static_dir = Path("static")
    static_dir.mkdir(exist_ok=True)
    bz_file_name = "100k_filtered_OA_sample_cluster_and_positions.bz"
    bz_file_path = static_dir / bz_file_name
    
    with open(bz_file_path, "wb") as f:
        f.write(basedata_file.content)
    
    # Load the data from the saved .bz file
    
    basedata_df = load(bz_file_path)
    
    
    return basedata_df

basedata_df = setup_basemap_data()


# mount Gradio app to FastAPI app
app = gr.mount_gradio_app(app, block, path="/")

# serve the app
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)

# run the app with
# python app.py
# or
# uvicorn "app:app" --host "0.0.0.0" --port 7860 --reload