File size: 3,533 Bytes
d87616f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abef6af
 
d87616f
 
 
 
 
 
 
abef6af
 
d87616f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
import torch
from mplug_docowl.model import *
from icecream import ic
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"):
    kwargs = {"device_map": device_map}

    if device != "cuda":
        kwargs['device_map'] = {"": device}

    if load_8bit:
        kwargs['load_in_8bit'] = True
    elif load_4bit:
        kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4'
        )
    else:
        kwargs['torch_dtype'] = torch.float16

    if 'paperowl' or 'docowl' in model_name.lower():
        if model_base is not None:
            # this may be mm projector only
            print('Loading mPLUG-DocOwl from base model...')
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            cfg_pretrained = AutoConfig.from_pretrained(model_path)
            model = MPLUGDocOwlLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
            # adjust for zero environment of huggingface space
            model.to("cuda:0")
        else:
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
            model = MPLUGDocOwlLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
    else:
        # Load language model
        if model_base is not None:
            # PEFT model
            from peft import PeftModel
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
            print(f"Loading LoRA weights from {model_path}")
            model = PeftModel.from_pretrained(model, model_path)
            print(f"Merging weights")
            model = model.merge_and_unload()
            print('Convert to FP16...')
            model.to(torch.float16)
        else:
            use_fast = False
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
            model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)


    # vision_tower = model.get_model().vision_model
    # vision_tower.to(device=device, dtype=torch.float16)
    image_processor = CLIPImageProcessor.from_pretrained(model_path)

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, image_processor, context_len