File size: 8,253 Bytes
d87616f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from einops import rearrange, repeat
import torch
from torchvision import transforms
from PIL import Image, ImageFile
import random
from torchvision.ops.boxes import box_area

from torchvision.transforms.transforms import InterpolationMode
from torchvision.transforms import functional as F
import numpy as np
from icecream import ic

ImageFile.LOAD_TRUNCATED_IMAGES = True
ImageFile.MAX_IMAGE_PIXELS = None
Image.MAX_IMAGE_PIXELS = None

def box_iou(boxes1, area1, boxes2, eps=1e-5):
    area2 = box_area(boxes2)

    lt = torch.max(boxes1[:, None, :2], boxes2[:, :2])  # [N,M,2]
    rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])  # [N,M,2]

    wh = (rb - lt).clamp(min=0)  # [N,M,2]
    inter = wh[:, :, 0] * wh[:, :, 1]  # [N,M]

    union = area1[:, None] + area2 - inter

    iou = inter / (union+eps)
    return iou, union

def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
    # anchors x1 y1 x2 y2

    # image_size: (h, w)
    # xyxy
    input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)

    boxes1 = anchors
    boxes2 = input_image_bbox
    boxes3 = anchors.clone()
    # y2
    boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
    
    area1 = anchors_areas
    
    iou, _ = box_iou(boxes1, area1, boxes2)
    iou = iou.squeeze(1)
    shape_iou, _ = box_iou(boxes1, area1, boxes3)
    shape_iou = shape_iou.diag()
    # 优先匹配形状接近 再匹配分辨率接近
    index = torch.argmax(shape_iou*100+iou,dim=0)
    return index

class AnchorResize(torch.nn.Module):

    def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None):
        super().__init__()
        # xyxy
        self.anchors = torch.tensor(
            [[0, 0, _[1]*image_size[1], _[0]*image_size[0]] 
            for _ in anchors], requires_grad=False
        )
        
        self.anchor_areas = box_area(self.anchors)

        self.interpolation = interpolation
        self.antialias = antialias

    def forward(self, img, skip_resize=False):
        """
        Args:
            img (PIL Image or Tensor): Image to be scaled.

        Returns:
            PIL Image or Tensor: Rescaled image.
        """
        selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
        target_size = self.anchors[selected_anchor][2:].tolist() # w,h
        if skip_resize:
            # for debug
            return selected_anchor
        return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor

    def __repr__(self) -> str:
        detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
        return f"{self.__class__.__name__}{detail}"

grid_dict = {
    'grid_1':[
        (1,1)],
    'grid_4':[
        (1,1),
        (1,2),(2,1),
        (1,3),(3,1),
        (2,2),(1,4),(4,1)],
    'grid_9':[
        (1,1),
        (1,2),(2,1),
        (1,3),(3,1),
        (2,2),(1,4),(4,1),
        (1,5),(5,1),
        (1,6),(6,1),(2,3),(3,2),
        (1,7),(7,1),
        (4,2),(2,4),(1,8),(8,1),
        (3,3),(1,9),(9,1)],
    'grid_3x3':[
        (3,3)],
    'grid_20':[
        (1, 1), 
        (1, 2), (2, 1), 
        (1, 3), (3, 1), (1, 4), (2, 2), (4, 1), 
        (1, 5), (5, 1), 
        (1, 6), (2, 3), (3, 2), (6, 1), 
        (1, 7), (7, 1), 
        (1, 8), (2, 4), (4, 2), (8, 1), 
        (1, 9), (3, 3), (9, 1), 
        (1, 10), (2, 5), (5, 2), (10, 1), 
        (1, 11), (11, 1), 
        (2, 6), (3, 4), (4, 3), (6, 2), 
        (2, 7), (7, 2), 
        (3, 5), (5, 3), 
        (2, 8), (4, 4), (8, 2), 
        (2, 9), (3, 6), (6, 3), (9, 2), 
        (2, 10), (4, 5), (5, 4), (10, 2)]
}

class DocProcessor():
    def __init__(self, image_size=224, anchors='grid_9', add_global_img=True, add_textual_crop_indicator=False):
        self.add_global_img = add_global_img
        self.add_textual_crop_indicator = add_textual_crop_indicator
        self.media_token= "<|image|>"
        # h,w
        if isinstance(image_size, int):
            image_size = (image_size, image_size)
        self.image_size = image_size
        # h,w
        anchors = grid_dict[anchors]
        self.anchors = [tuple(_) for _ in anchors]
        self.anchor_max = max([max(_) for _ in self.anchors])
        # xywh -> xyxy
        self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC)
        self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
        self.image_transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
        ])
    
    def _process_image(self, images):
        new_images = []
        new_patch_position = []
        num_image_mult = []
        for image in images:
            if self.add_global_img:
                nocut_image = self.image_transform(self.old_resizer(image)).unsqueeze(0)
                
            image, selected_anchor = self.resizer(image)
            image_input = self.image_transform(image) # h,w,3 -> 3,h,w
            # rearrange(x,'B C (n1 h) (n2 w) -> (B n1 n2) C h w', n1=self.down_sample[0], n2=self.down_sample[1])
            image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])

            if self.add_global_img:
                image_input = torch.cat([nocut_image, image_input], dim=0)

            anchor = self.anchors[selected_anchor] # w,h
            ic(anchor)
            patch_position = torch.cat([
                repeat(torch.arange(anchor[0]), 'num_h -> num_h num_w 1', num_w=anchor[1]),
                repeat(torch.arange(anchor[1]), 'num_w -> num_h num_w 1', num_h=anchor[0])],dim=2)
            patch_position = rearrange(patch_position, 'num_h num_w p-> (num_h num_w) p', p=2) # num_patch, (ph,pw)

            if self.add_global_img:
                patch_position = torch.cat([torch.ones(1,2).long()*self.anchor_max, patch_position], dim=0)

            new_images.append(image_input)
            new_patch_position.append(patch_position)
            num_image_mult.append(patch_position.shape[0])

        new_images = torch.cat(new_images,dim=0)
        new_patch_position = torch.cat(new_patch_position, dim=0)
        return new_images, new_patch_position, num_image_mult

    def __call__(self, images=None, query=None):
        assert images is not None

        if not isinstance(images, list):
            images = [images]
        image_pils = []
        for image in images:
            if isinstance(image, str):
                image = Image.open(image).convert('RGB')
            else:
                image = image.convert('RGB')
            # ic(image.size)
            image_pils.append(image)

        image_data, patch_position, num_image_mult = self._process_image(image_pils)

        assert self.media_token in query
        text_list = query.split(self.media_token)
        text = text_list[0]
        image_token_ptr = 0
        for next_text in text_list[1:]:
            if self.add_textual_crop_indicator:
                # generate image placeholders with interleaved texutual crop indicator
                # e.g. <global_img><|image|><crop_img_row0_col0><|image|><crop_img_row0_col1><|image|>...
                for patch_pos in patch_position.tolist():
                    # global non-crop image
                    if patch_pos[0] == self.anchor_max and patch_pos[1] == self.anchor_max:
                        text += '<global_img><|image|>'
                    else:
                        row_col = 'row'+str(patch_pos[0])+'_col'+str(patch_pos[1])
                        text += '<crop_img_'+row_col+'><|image|>'
            else: 
                # generate successive image placeholders for a image, 1 crop img == 1 <|image|>
                text += '<|image|>'*num_image_mult[image_token_ptr]
            text += next_text
            image_token_ptr += 1

        return image_data, patch_position, text