Spaces:
Runtime error
Runtime error
""" | |
A model worker executes the model. | |
""" | |
import argparse | |
import asyncio | |
import json | |
import time | |
import threading | |
import uuid | |
from fastapi import FastAPI, Request, BackgroundTasks | |
from fastapi.responses import StreamingResponse | |
import requests | |
import torch | |
import uvicorn | |
from functools import partial | |
from mplug_docowl.utils import (build_logger, server_error_msg, | |
pretty_print_semaphore) | |
from mplug_docowl.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN,WORKER_HEART_BEAT_INTERVAL | |
from mplug_docowl.conversation import conv_templates, SeparatorStyle | |
from mplug_docowl.model.builder import load_pretrained_model | |
from mplug_docowl.mm_utils import load_image_from_base64, process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria | |
from mplug_docowl.processor import DocProcessor | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
from icecream import ic | |
GB = 1 << 30 | |
worker_id = str(uuid.uuid4())[:6] | |
logger = build_logger("model_worker", f"model_worker_{worker_id}.log") | |
global_counter = 0 | |
model_semaphore = None | |
def heart_beat_worker(controller): | |
while True: | |
time.sleep(WORKER_HEART_BEAT_INTERVAL) | |
controller.send_heart_beat() | |
class ModelWorker: | |
def __init__(self, | |
model_path, model_base, model_name, | |
resolution, anchors, add_global_img, | |
load_8bit, load_4bit, device): | |
if model_path.endswith("/"): | |
model_path = model_path[:-1] | |
self.model_name = get_model_name_from_path(model_path) | |
self.device = device | |
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") | |
self.tokenizer, self.model, _, self.context_len = load_pretrained_model( | |
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device) | |
self.resolution=resolution | |
self.token_num_each_img = (self.resolution/14)*(self.resolution/14)/self.model.get_model().vision2text.conv_patch | |
self.doc_image_processor = DocProcessor(image_size=resolution, anchors=anchors, add_global_img=add_global_img, add_textual_crop_indicator=True) | |
self.is_multimodal = True | |
def generate_stream(self, params): | |
tokenizer, model = self.tokenizer, self.model | |
prompt = params["prompt"] | |
ori_prompt = prompt | |
images = params.get("images", None) | |
num_image_tokens = 0 | |
if images is not None and len(images) > 0 and self.is_multimodal: | |
if len(images) > 0: | |
images = [load_image_from_base64(image) for image in images] | |
# docowl only support 1 image, so only keep the last image | |
image = images[-1] | |
assert prompt.count(DEFAULT_IMAGE_TOKEN) == 1 | |
images, patch_positions, prompt = self.doc_image_processor(images=image, query=prompt) | |
images = images.to(self.model.device, dtype=torch.float16) | |
patch_positions = patch_positions.to(self.model.device) | |
replace_token = DEFAULT_IMAGE_TOKEN | |
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) | |
num_image_tokens = prompt.count(replace_token) * (self.token_num_each_img+1) | |
else: | |
images = None | |
patch_positions = None | |
image_args = {"images": images, "patch_positions":patch_positions} | |
else: | |
images = None | |
image_args = {} | |
temperature = float(params.get("temperature", 1.0)) | |
top_p = float(params.get("top_p", 1.0)) | |
# max_context_length = getattr(model.config, 'max_position_embeddings', 4096) | |
max_context_length = 4096 | |
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) | |
stop_str = params.get("stop", None) | |
# do_sample = True if temperature > 0.001 else False | |
do_sample = False | |
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) | |
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) | |
ic(max_context_length, input_ids.shape[-1], num_image_tokens, max_new_tokens) | |
if max_new_tokens < 1: | |
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() | |
return | |
thread = Thread(target=model.generate, kwargs=dict( | |
inputs=input_ids, | |
do_sample=do_sample, | |
temperature=temperature, | |
# top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
streamer=streamer, | |
stopping_criteria=[stopping_criteria], | |
use_cache=True, | |
**image_args | |
)) | |
thread.start() | |
generated_text = ori_prompt | |
for new_text in streamer: | |
generated_text += new_text | |
if generated_text.endswith(stop_str): | |
generated_text = generated_text[:-len(stop_str)] | |
# yield json.dumps({"text": generated_text, "error_code": 0}).encode() | |
# replace < > to [ ] to avoide <doc>,<md>,<ocr>,<bbox> are removed by web code | |
yield json.dumps({"text": generated_text.replace('<','[').replace('>',']'), "error_code": 0}).encode() | |
def generate_stream_gate(self, params): | |
try: | |
for x in self.generate_stream(params): | |
yield x | |
except ValueError as e: | |
print("Caught ValueError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() | |
except torch.cuda.CudaError as e: | |
print("Caught torch.cuda.CudaError:", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() | |
except Exception as e: | |
print("Caught Unknown Error", e) | |
ret = { | |
"text": server_error_msg, | |
"error_code": 1, | |
} | |
yield json.dumps(ret).encode() | |