Spaces:
Runtime error
Runtime error
# Copyright (c) Alibaba. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import copy | |
import os | |
from typing import Union | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | |
from transformers.utils import logging | |
from transformers.models.auto import CONFIG_MAPPING | |
class LlamaConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the LLaMA-7B. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`LlamaModel`] | |
hidden_size (`int`, *optional*, defaults to 4096): | |
Dimension of the hidden representations. | |
intermediate_size (`int`, *optional*, defaults to 11008): | |
Dimension of the MLP representations. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer decoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer decoder. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string) in the decoder. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, | |
Llama 2 up to 4096, CodeLlama up to 16384. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the rms normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions (not used by all models). Only | |
relevant if `config.is_decoder=True`. | |
pad_token_id (`int`, *optional*): | |
Padding token id. | |
bos_token_id (`int`, *optional*, defaults to 1): | |
Beginning of stream token id. | |
eos_token_id (`int`, *optional*, defaults to 2): | |
End of stream token id. | |
pretraining_tp (`int`, *optional*, defaults to 1): | |
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | |
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | |
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | |
issue](https://github.com/pytorch/pytorch/issues/76232). | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
rope_scaling (`Dict`, *optional*): | |
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | |
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | |
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | |
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how | |
these scaling strategies behave: | |
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | |
experimental feature, subject to breaking API changes in future versions. | |
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | |
Whether to use a bias in the query, key, value and output projection layers during self-attention. | |
```python | |
>>> from transformers import LlamaModel, LlamaConfig | |
>>> # Initializing a LLaMA llama-7b style configuration | |
>>> configuration = LlamaConfig() | |
>>> # Initializing a model from the llama-7b style configuration | |
>>> model = LlamaModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "llama" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=4096, | |
intermediate_size=11008, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=None, | |
hidden_act="silu", | |
max_position_embeddings=2048, | |
initializer_range=0.02, | |
rms_norm_eps=1e-6, | |
use_cache=True, | |
pad_token_id=None, | |
bos_token_id=1, | |
eos_token_id=2, | |
pretraining_tp=1, | |
tie_word_embeddings=False, | |
rope_theta=10000.0, | |
rope_scaling=None, | |
attention_bias=False, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
# for backward compatibility | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.initializer_range = initializer_range | |
self.rms_norm_eps = rms_norm_eps | |
self.pretraining_tp = pretraining_tp | |
self.use_cache = use_cache | |
self.rope_theta = rope_theta | |
self.rope_scaling = rope_scaling | |
self._rope_scaling_validation() | |
self.attention_bias = attention_bias | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
def _rope_scaling_validation(self): | |
""" | |
Validate the `rope_scaling` configuration. | |
""" | |
if self.rope_scaling is None: | |
return | |
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | |
raise ValueError( | |
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " | |
f"got {self.rope_scaling}" | |
) | |
rope_scaling_type = self.rope_scaling.get("type", None) | |
rope_scaling_factor = self.rope_scaling.get("factor", None) | |
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | |
raise ValueError( | |
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | |
) | |
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | |
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") | |
class MplugOwlVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate | |
a | |
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration defaults will yield a similar configuration to that of the mPLUG-Owl | |
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 32): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
initializer_range (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
initializer_factor (`float`, *optional*, defaults to 1): | |
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
testing). | |
```""" | |
model_type = "mplug_owl_vision_model" | |
def __init__( | |
self, | |
hidden_size=1024, | |
intermediate_size=4096, | |
projection_dim=768, | |
num_hidden_layers=24, | |
num_attention_heads=16, | |
num_channels=3, | |
image_size=448, | |
patch_size=14, | |
hidden_act="quick_gelu", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
initializer_range=0.02, | |
initializer_factor=1.0, | |
use_flash_attn=False, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.projection_dim = projection_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.initializer_range = initializer_range | |
self.initializer_factor = initializer_factor | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.use_flash_attn = use_flash_attn | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from MplugOwlConfig | |
if config_dict.get("model_type") == "mplug-owl": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class MplugDocOwlHReducerConfig(PretrainedConfig): | |
model_type = "mplug_docowl_hreducer" | |
def __init__( | |
self, | |
hidden_size=1024, | |
initializer_range=0.02, | |
layer_norm_eps=1e-6, | |
conv_shape='1x4', | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.initializer_range = initializer_range | |
self.layer_norm_eps = layer_norm_eps | |
self.conv_shape = conv_shape | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the visual_abstractor config dict if we are loading from MplugOwlConfig | |
if config_dict.get("model_type") == "mplug-docowl": | |
config_dict = config_dict["hreducer_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
DEFAULT_VISUAL_CONFIG = { | |
"visual_model": MplugOwlVisionConfig().to_dict(), | |
"visual_hreducer": MplugDocOwlHReducerConfig().to_dict() | |
} | |
class MPLUGDocOwlConfig(LlamaConfig): | |
model_type = "mplug_docowl" | |
def __init__(self, visual_config=None, **kwargs): | |
if visual_config is None: | |
self.visual_config = DEFAULT_VISUAL_CONFIG | |
else: | |
self.visual_config = visual_config | |
super().__init__( | |
**kwargs, | |
) | |
if __name__ == "__main__": | |
print(MplugOwlVisionConfig().to_dict()) |