Spaces:
Runtime error
Runtime error
# Copyright 2023 Haotian Liu & Qinghao Ye (Modified from LLaVA) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss | |
from transformers import AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaModel, LlamaForCausalLM | |
from transformers.modeling_outputs import CausalLMOutputWithPast | |
from .configuration_mplug_docowl import (MPLUGDocOwlConfig, MplugOwlVisionConfig, MplugDocOwlHReducerConfig) | |
from .visual_encoder import MplugOwlVisionModel, MplugDocOwlHReducerModel | |
from .modeling_llama2 import replace_llama_modality_adaptive | |
from mplug_docowl.constants import IMAGE_TOKEN_INDEX, IGNORE_INDEX | |
from icecream import ic | |
class MPLUGDocOwlMetaModel: | |
def __init__(self, config): | |
super(MPLUGDocOwlMetaModel, self).__init__(config) | |
self.vision_model = MplugOwlVisionModel( | |
MplugOwlVisionConfig(**config.visual_config["visual_model"]) | |
) | |
self.vision2text = MplugDocOwlHReducerModel( | |
MplugDocOwlHReducerConfig(**config.visual_config["visual_hreducer"]), config.hidden_size | |
) | |
def get_vision_tower(self): | |
vision_model = getattr(self, 'vision_model', None) | |
if type(vision_model) is list: | |
vision_model = vision_model[0] | |
return vision_model | |
def get_vision2text(self): | |
vision2text = getattr(self, 'vision2text', None) | |
if type(vision2text) is list: | |
vision2text = vision2text[0] | |
return vision2text | |
class MPLUGDocOwlMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def encode_images(self, images, patch_positions): | |
image_features = self.get_model().vision_model(images).last_hidden_state | |
image_features = self.get_model().vision2text(encoder_hidden_states=image_features) | |
return image_features | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, attention_mask, past_key_values, labels, images, patch_positions | |
): | |
if images is None or input_ids.shape[1] == 1: | |
if past_key_values is not None and images is not None and input_ids.shape[1] == 1: | |
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) | |
multiway_indices = torch.zeros_like(input_ids).long().to(self.device) | |
return input_ids, multiway_indices, attention_mask, past_key_values, None, labels | |
if type(images) is list or images.ndim == 5: | |
concat_images = torch.cat([image for image in images], dim=0) | |
image_features = self.encode_images(concat_images, patch_positions) | |
split_sizes = [image.shape[0] for image in images] | |
image_features = torch.split(image_features, split_sizes, dim=0) | |
image_features = [x.flatten(0, 1) for x in image_features] | |
else: | |
image_features = self.encode_images(images, patch_positions) # Sum(Crop Image Number) x L x d | |
new_input_embeds = [] | |
new_modality_indicators = [] | |
new_labels = [] if labels is not None else None | |
cur_image_idx = 0 | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: | |
# multimodal LLM, but the current sample is not multimodal | |
# FIXME: this is a hacky fix, for deepspeed zero3 to work | |
half_len = cur_input_ids.shape[0] // 2 | |
cur_image_features = image_features[cur_image_idx] | |
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) | |
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) | |
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) | |
new_input_embeds.append(cur_input_embeds) | |
cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device) | |
new_modality_indicators.append(cur_modality_indicators) | |
if labels is not None: | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
continue | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
cur_new_input_embeds = [] | |
cur_modality_indicators = [] | |
if labels is not None: | |
cur_labels = labels[batch_idx] | |
cur_new_labels = [] | |
assert cur_labels.shape == cur_input_ids.shape | |
while image_token_indices.numel() > 0: | |
cur_image_features = image_features[cur_image_idx] | |
image_token_start = image_token_indices[0] | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) | |
cur_new_input_embeds.append(cur_image_features) | |
# Add modality indicator | |
assert image_token_start == len(cur_input_ids[:image_token_start]) | |
cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long()) | |
cur_modality_indicators.append(torch.ones(len(cur_image_features)).long()) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:image_token_start]) | |
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) | |
cur_labels = cur_labels[image_token_start+1:] | |
cur_image_idx += 1 | |
cur_input_ids = cur_input_ids[image_token_start+1:] | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
if cur_input_ids.numel() > 0: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long()) | |
if labels is not None: | |
cur_new_labels.append(cur_labels) | |
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
# Modality | |
cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators] | |
cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0) | |
new_modality_indicators.append(cur_modality_indicators) | |
if labels is not None: | |
cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
new_labels.append(cur_new_labels) | |
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
# Embedding | |
new_input_embeds_align = [] | |
for cur_new_embed in new_input_embeds: | |
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) | |
new_input_embeds_align.append(cur_new_embed) | |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
# Modality | |
new_modality_indicators_align = [] | |
for cur_modality_indicator in new_modality_indicators: | |
cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0) | |
new_modality_indicators_align.append(cur_new_embed) | |
new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0) | |
# Label | |
if labels is not None: | |
new_labels_align = [] | |
_new_labels = new_labels | |
for cur_new_label in new_labels: | |
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) | |
new_labels_align.append(cur_new_label) | |
new_labels = torch.stack(new_labels_align, dim=0) | |
# Attention Mask | |
if attention_mask is not None: | |
new_attention_mask = [] | |
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): | |
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) | |
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) | |
new_attention_mask.append(cur_new_attention_mask) | |
attention_mask = torch.stack(new_attention_mask, dim=0) | |
assert attention_mask.shape == new_labels.shape | |
else: | |
new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
new_modality_indicators = torch.stack(new_modality_indicators, dim=0) | |
if labels is not None: | |
new_labels = torch.stack(new_labels, dim=0) | |
if attention_mask is not None: | |
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) | |
assert attention_mask.shape == new_input_embeds.shape[:2] | |
return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels | |
class MPLUGDocOwlLlamaModel(MPLUGDocOwlMetaModel, LlamaModel): | |
config_class = MPLUGDocOwlConfig | |
def __init__(self, config: MPLUGDocOwlConfig): | |
super(MPLUGDocOwlLlamaModel, self).__init__(config) | |
class MPLUGDocOwlLlamaForCausalLM(LlamaForCausalLM, MPLUGDocOwlMetaForCausalLM): | |
config_class = MPLUGDocOwlConfig | |
def __init__(self, config): | |
super(LlamaForCausalLM, self).__init__(config) | |
self.model = MPLUGDocOwlLlamaModel(config) | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
# modality_indicators: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
patch_positions: Optional[torch.LongTensor] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
# print('modeling_mplug_docow2.py patch_positions:', patch_positions) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \ | |
self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images, patch_positions) | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
modality_indicators=modality_indicators, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model/pipeline parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
if past_key_values: | |
input_ids = input_ids[:, -1:] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
model_inputs.update( | |
{ | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"images": kwargs.get("images", None), | |
"patch_positions": kwargs.get("patch_positions", None), | |
} | |
) | |
return model_inputs | |
AutoConfig.register("mplug_docowl", MPLUGDocOwlConfig) | |
AutoModelForCausalLM.register(MPLUGDocOwlConfig, MPLUGDocOwlLlamaForCausalLM) | |
replace_llama_modality_adaptive() | |