#!/usr/bin/env python # encoding: utf-8 import torch torch.randn(10).cuda() import argparse from transformers import AutoModel, AutoTokenizer import gradio as gr from PIL import Image from decord import VideoReader, cpu import io import os os.system("nvidia-smi") import copy import requests import base64 import json import traceback import re import modelscope_studio as mgr from modelscope.hub.snapshot_download import snapshot_download model_dir = snapshot_download('iic/mPLUG-Owl3-7B-240728', cache_dir='./') os.system('ls') # README, How to run demo on different devices # For Nvidia GPUs. # python web_demo_2.6.py --device cuda # For Mac with MPS (Apple silicon or AMD GPUs). # PYTORCH_ENABLE_MPS_FALLBACK=1 python web_demo_2.6.py --device mps # Argparser parser = argparse.ArgumentParser(description='demo') parser.add_argument('--device', type=str, default='cuda', help='cuda or mps') parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) args = parser.parse_args() device = args.device assert device in ['cuda', 'mps'] # Load model model_path = './iic/mPLUG-Owl3-7B-240728' if 'int4' in model_path: if device == 'mps': print('Error: running int4 model with bitsandbytes on Mac is not supported right now.') exit() model = AutoModel.from_pretrained(model_path, attn_implementation='sdpa', trust_remote_code=True) else: model = AutoModel.from_pretrained(model_path, attn_implementation='sdpa', trust_remote_code=True, torch_dtype=torch.bfloat16) model = model.to(device=device) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model.eval() ERROR_MSG = "Error, please retry" model_name = 'mPLUG-Owl3' MAX_NUM_FRAMES = 64 IMAGE_EXTENSIONS = {'.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp'} VIDEO_EXTENSIONS = {'.mp4', '.mkv', '.mov', '.avi', '.flv', '.wmv', '.webm', '.m4v'} def get_file_extension(filename): return os.path.splitext(filename)[1].lower() def is_image(filename): return get_file_extension(filename) in IMAGE_EXTENSIONS def is_video(filename): return get_file_extension(filename) in VIDEO_EXTENSIONS form_radio = { 'choices': ['Beam Search', 'Sampling'], #'value': 'Beam Search', 'value': 'Sampling', 'interactive': True, 'label': 'Decode Type' } def create_component(params, comp='Slider'): if comp == 'Slider': return gr.Slider( minimum=params['minimum'], maximum=params['maximum'], value=params['value'], step=params['step'], interactive=params['interactive'], label=params['label'] ) elif comp == 'Radio': return gr.Radio( choices=params['choices'], value=params['value'], interactive=params['interactive'], label=params['label'] ) elif comp == 'Button': return gr.Button( value=params['value'], interactive=True ) def create_multimodal_input(upload_image_disabled=False, upload_video_disabled=False): return mgr.MultimodalInput(upload_image_button_props={'label': 'Upload Image', 'disabled': upload_image_disabled, 'file_count': 'multiple'}, upload_video_button_props={'label': 'Upload Video', 'disabled': upload_video_disabled, 'file_count': 'single'}, submit_button_props={'label': 'Submit'}) def chat(img, msgs, ctx, params=None, vision_hidden_states=None): try: print('msgs:', msgs) images = [] videos = [] messages = [] for line in msgs: s = "" for item in line['content']: if isinstance(item, str): s+=item else: s+='<|image|>' images.append(item) messages.append({"role": line['role'], "content": s}) messages.append({"role": "assistant", "content": ""}) answer = model.chat( images=images, videos=videos, messages=messages, tokenizer=tokenizer, **params ) res = re.sub(r'(.*)', '', answer) res = res.replace('', '') res = res.replace('', '') res = res.replace('', '') answer = res.replace('', '') print('answer:', answer) return 0, answer, None, None except Exception as e: print(e) traceback.print_exc() return -1, ERROR_MSG, None, None def encode_image(image): if not isinstance(image, Image.Image): if hasattr(image, 'path'): image = Image.open(image.path).convert("RGB") else: image = Image.open(image.file.path).convert("RGB") # resize to max_size max_size = 448*16 if max(image.size) > max_size: w,h = image.size if w > h: new_w = max_size new_h = int(h * max_size / w) else: new_h = max_size new_w = int(w * max_size / h) image = image.resize((new_w, new_h), resample=Image.BICUBIC) return image ## save by BytesIO and convert to base64 #buffered = io.BytesIO() #image.save(buffered, format="png") #im_b64 = base64.b64encode(buffered.getvalue()).decode() #return {"type": "image", "pairs": im_b64} def encode_video(video): def uniform_sample(l, n): gap = len(l) / n idxs = [int(i * gap + gap / 2) for i in range(n)] return [l[i] for i in idxs] if hasattr(video, 'path'): vr = VideoReader(video.path, ctx=cpu(0)) else: vr = VideoReader(video.file.path, ctx=cpu(0)) sample_fps = round(vr.get_avg_fps() / 1) # FPS frame_idx = [i for i in range(0, len(vr), sample_fps)] if len(frame_idx)>MAX_NUM_FRAMES: frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES) video = vr.get_batch(frame_idx).asnumpy() video = [Image.fromarray(v.astype('uint8')) for v in video] video = [encode_image(v) for v in video] print('video frames:', len(video)) return video def check_mm_type(mm_file): if hasattr(mm_file, 'path'): path = mm_file.path else: path = mm_file.file.path if is_image(path): return "image" if is_video(path): return "video" return None def encode_mm_file(mm_file): if check_mm_type(mm_file) == 'image': return [encode_image(mm_file)] if check_mm_type(mm_file) == 'video': return encode_video(mm_file) return None def make_text(text): #return {"type": "text", "pairs": text} # # For remote call return text def encode_message(_question): files = _question.files question = _question.text pattern = r"\[mm_media\]\d+\[/mm_media\]" matches = re.split(pattern, question) message = [] if len(matches) != len(files) + 1: gr.Warning("Number of Images not match the placeholder in text, please refresh the page to restart!") assert len(matches) == len(files) + 1 text = matches[0].strip() if text: message.append(make_text(text)) for i in range(len(files)): message += encode_mm_file(files[i]) text = matches[i + 1].strip() if text: message.append(make_text(text)) return message def check_has_videos(_question): images_cnt = 0 videos_cnt = 0 for file in _question.files: if check_mm_type(file) == "image": images_cnt += 1 else: videos_cnt += 1 return images_cnt, videos_cnt def count_video_frames(_context): num_frames = 0 for message in _context: for item in message["content"]: #if item["type"] == "image": # For remote call if isinstance(item, Image.Image): num_frames += 1 return num_frames def respond(_question, _chat_bot, _app_cfg, params_form): _context = _app_cfg['ctx'].copy() _context.append({'role': 'user', 'content': encode_message(_question)}) images_cnt = _app_cfg['images_cnt'] videos_cnt = _app_cfg['videos_cnt'] files_cnts = check_has_videos(_question) if files_cnts[1] + videos_cnt > 1 or (files_cnts[1] + videos_cnt == 1 and files_cnts[0] + images_cnt > 0): gr.Warning("Only supports single video file input right now!") return _question, _chat_bot, _app_cfg if params_form == 'Beam Search': params = { 'sampling': False, 'num_beams': 3, 'repetition_penalty': 1.2, "max_new_tokens": 2048 } else: params = { 'sampling': True, 'top_p': 0.8, 'top_k': 100, 'temperature': 0.7, 'repetition_penalty': 1.05, "max_new_tokens": 2048 } if files_cnts[1] + videos_cnt > 0: params["max_inp_length"] = 4352 # 4096+256 params["use_image_id"] = False params["max_slice_nums"] = 1 if count_video_frames(_context) > 16 else 2 code, _answer, _, sts = chat("", _context, None, params) images_cnt += files_cnts[0] videos_cnt += files_cnts[1] _context.append({"role": "assistant", "content": [make_text(_answer)]}) _chat_bot.append((_question, _answer)) if code == 0: _app_cfg['ctx']=_context _app_cfg['sts']=sts _app_cfg['images_cnt'] = images_cnt _app_cfg['videos_cnt'] = videos_cnt upload_image_disabled = videos_cnt > 0 upload_video_disabled = videos_cnt > 0 or images_cnt > 0 return create_multimodal_input(upload_image_disabled, upload_video_disabled), _chat_bot, _app_cfg def fewshot_add_demonstration(_image, _user_message, _assistant_message, _chat_bot, _app_cfg): ctx = _app_cfg["ctx"] message_item = [] if _image is not None: image = Image.open(_image).convert("RGB") ctx.append({"role": "user", "content": [encode_image(image), make_text(_user_message)]}) message_item.append({"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]}) else: if _user_message: ctx.append({"role": "user", "content": [make_text(_user_message)]}) message_item.append({"text": _user_message, "files": []}) else: message_item.append(None) if _assistant_message: ctx.append({"role": "assistant", "content": [make_text(_assistant_message)]}) message_item.append({"text": _assistant_message, "files": []}) else: message_item.append(None) _chat_bot.append(message_item) return None, "", "", _chat_bot, _app_cfg def fewshot_respond(_image, _user_message, _chat_bot, _app_cfg, params_form): user_message_contents = [] _context = _app_cfg["ctx"].copy() if _image: image = Image.open(_image).convert("RGB") user_message_contents += [encode_image(image)] if _user_message: user_message_contents += [make_text(_user_message)] if user_message_contents: _context.append({"role": "user", "content": user_message_contents}) if params_form == 'Beam Search': params = { 'sampling': False, 'num_beams': 3, 'repetition_penalty': 1.2, "max_new_tokens": 2048 } else: params = { 'sampling': True, 'top_p': 0.8, 'top_k': 100, 'temperature': 0.7, 'repetition_penalty': 1.05, "max_new_tokens": 2048 } code, _answer, _, sts = chat("", _context, None, params) _context.append({"role": "assistant", "content": [make_text(_answer)]}) if _image: _chat_bot.append([ {"text": "[mm_media]1[/mm_media]" + _user_message, "files": [_image]}, {"text": _answer, "files": []} ]) else: _chat_bot.append([ {"text": _user_message, "files": [_image]}, {"text": _answer, "files": []} ]) if code == 0: _app_cfg['ctx']=_context _app_cfg['sts']=sts return None, '', '', _chat_bot, _app_cfg def regenerate_button_clicked(_question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg, params_form): if len(_chat_bot) <= 1 or not _chat_bot[-1][1]: gr.Warning('No question for regeneration.') return '', _image, _user_message, _assistant_message, _chat_bot, _app_cfg if _app_cfg["chat_type"] == "Chat": images_cnt = _app_cfg['images_cnt'] videos_cnt = _app_cfg['videos_cnt'] _question = _chat_bot[-1][0] _chat_bot = _chat_bot[:-1] _app_cfg['ctx'] = _app_cfg['ctx'][:-2] files_cnts = check_has_videos(_question) images_cnt -= files_cnts[0] videos_cnt -= files_cnts[1] _app_cfg['images_cnt'] = images_cnt _app_cfg['videos_cnt'] = videos_cnt upload_image_disabled = videos_cnt > 0 upload_video_disabled = videos_cnt > 0 or images_cnt > 0 _question, _chat_bot, _app_cfg = respond(_question, _chat_bot, _app_cfg, params_form) return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg else: last_message = _chat_bot[-1][0] last_image = None last_user_message = '' if last_message.text: last_user_message = last_message.text if last_message.files: last_image = last_message.files[0].file.path _chat_bot = _chat_bot[:-1] _app_cfg['ctx'] = _app_cfg['ctx'][:-2] _image, _user_message, _assistant_message, _chat_bot, _app_cfg = fewshot_respond(last_image, last_user_message, _chat_bot, _app_cfg, params_form) return _question, _image, _user_message, _assistant_message, _chat_bot, _app_cfg def flushed(): return gr.update(interactive=True) def clear(txt_message, chat_bot, app_session): txt_message.files.clear() txt_message.text = '' chat_bot = copy.deepcopy(init_conversation) app_session['sts'] = None app_session['ctx'] = [] app_session['images_cnt'] = 0 app_session['videos_cnt'] = 0 return create_multimodal_input(), chat_bot, app_session, None, '', '' def select_chat_type(_tab, _app_cfg): _app_cfg["chat_type"] = _tab return _app_cfg init_conversation = [ [ None, { # The first message of bot closes the typewriter. "text": "You can talk to me now", "flushing": False } ], ] css = """ video { height: auto !important; } .example label { font-size: 16px;} """ introduction = """ ## Github: [mPLUG-Owl](https://github.com/X-PLUG/mPLUG-Owl) Checkpoint: [mPLUG-Owl3-7B-240728](https://huggingface.co/mPLUG/mPLUG-Owl3-7B-240728) Paper: [mPLUG-Owl3: Towards Long Image-Sequence Understanding in Multi-Modal Large Language Models ](https://arxiv.org/abs/2408.04840) """ with gr.Blocks(css=css) as demo: with gr.Tab(model_name): with gr.Row(): with gr.Column(scale=1, min_width=300): gr.Markdown(value=introduction) params_form = create_component(form_radio, comp='Radio') regenerate = create_component({'value': 'Regenerate'}, comp='Button') clear_button = create_component({'value': 'Clear History'}, comp='Button') with gr.Column(scale=3, min_width=500): app_session = gr.State({'sts':None,'ctx':[], 'images_cnt': 0, 'videos_cnt': 0, 'chat_type': 'Chat'}) chat_bot = mgr.Chatbot(label=f"Chat with {model_name}", value=copy.deepcopy(init_conversation), height=600, flushing=False, bubble_full_width=False) with gr.Tab("Chat") as chat_tab: txt_message = create_multimodal_input() chat_tab_label = gr.Textbox(value="Chat", interactive=False, visible=False) txt_message.submit( respond, [txt_message, chat_bot, app_session, params_form], [txt_message, chat_bot, app_session] ) with gr.Tab("Few Shot") as fewshot_tab: fewshot_tab_label = gr.Textbox(value="Few Shot", interactive=False, visible=False) with gr.Row(): with gr.Column(scale=1): image_input = gr.Image(type="filepath", sources=["upload"]) with gr.Column(scale=3): user_message = gr.Textbox(label="User") assistant_message = gr.Textbox(label="Assistant") with gr.Row(): add_demonstration_button = gr.Button("Add Example") generate_button = gr.Button(value="Generate", variant="primary") add_demonstration_button.click( fewshot_add_demonstration, [image_input, user_message, assistant_message, chat_bot, app_session], [image_input, user_message, assistant_message, chat_bot, app_session] ) generate_button.click( fewshot_respond, [image_input, user_message, chat_bot, app_session, params_form], [image_input, user_message, assistant_message, chat_bot, app_session] ) chat_tab.select( select_chat_type, [chat_tab_label, app_session], [app_session] ) chat_tab.select( # do clear clear, [txt_message, chat_bot, app_session], [txt_message, chat_bot, app_session, image_input, user_message, assistant_message] ) fewshot_tab.select( select_chat_type, [fewshot_tab_label, app_session], [app_session] ) fewshot_tab.select( # do clear clear, [txt_message, chat_bot, app_session], [txt_message, chat_bot, app_session, image_input, user_message, assistant_message] ) chat_bot.flushed( flushed, outputs=[txt_message] ) regenerate.click( regenerate_button_clicked, [txt_message, image_input, user_message, assistant_message, chat_bot, app_session, params_form], [txt_message, image_input, user_message, assistant_message, chat_bot, app_session] ) clear_button.click( clear, [txt_message, chat_bot, app_session], [txt_message, chat_bot, app_session, image_input, user_message, assistant_message] ) # launch demo.launch(share=False, debug=True, show_api=False, server_port=args.port, server_name=args.host)