maazamjad commited on
Commit
9cbecf4
·
verified ·
1 Parent(s): 2bef3bb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +220 -435
app.py CHANGED
@@ -1,20 +1,20 @@
1
- # GRADIO ML CLASSIFICATION APP - DUAL MODEL SUPPORT
2
- # =====================================================
3
 
4
  import gradio as gr
5
  import pandas as pd
6
  import numpy as np
7
  import joblib
8
  import matplotlib.pyplot as plt
9
- import seaborn as sns
10
- import io
11
- import base64
12
- from typing import Tuple, List, Optional
13
  import warnings
 
 
 
 
14
  warnings.filterwarnings('ignore')
15
 
16
  # ============================================================================
17
- # MODEL LOADING SECTION
18
  # ============================================================================
19
 
20
  def load_models():
@@ -22,42 +22,39 @@ def load_models():
22
  models = {}
23
 
24
  try:
25
- # Load the main pipeline (Logistic Regression)
26
  try:
27
  models['pipeline'] = joblib.load('models/sentiment_analysis_pipeline.pkl')
28
  models['pipeline_available'] = True
29
- except FileNotFoundError:
30
  models['pipeline_available'] = False
31
 
32
- # Load TF-IDF vectorizer
33
  try:
34
  models['vectorizer'] = joblib.load('models/tfidf_vectorizer.pkl')
35
  models['vectorizer_available'] = True
36
- except FileNotFoundError:
37
  models['vectorizer_available'] = False
38
 
39
- # Load Logistic Regression model
40
  try:
41
  models['logistic_regression'] = joblib.load('models/logistic_regression_model.pkl')
42
  models['lr_available'] = True
43
- except FileNotFoundError:
44
  models['lr_available'] = False
45
 
46
- # Load Multinomial Naive Bayes model
47
  try:
48
  models['naive_bayes'] = joblib.load('models/multinomial_nb_model.pkl')
49
  models['nb_available'] = True
50
- except FileNotFoundError:
51
  models['nb_available'] = False
52
 
53
- # Check if at least one complete setup is available
54
  pipeline_ready = models['pipeline_available']
55
  individual_ready = models['vectorizer_available'] and (models['lr_available'] or models['nb_available'])
56
 
57
- if not (pipeline_ready or individual_ready):
58
- return None
59
-
60
- return models
61
 
62
  except Exception as e:
63
  print(f"Error loading models: {e}")
@@ -67,93 +64,77 @@ def load_models():
67
  MODELS = load_models()
68
 
69
  # ============================================================================
70
- # PREDICTION FUNCTIONS
71
  # ============================================================================
72
 
73
- def make_prediction(text: str, model_choice: str) -> Tuple[Optional[str], Optional[np.ndarray], str]:
74
- """Make prediction using the selected model"""
75
  if MODELS is None:
76
- return None, None, "No models loaded!"
 
 
 
 
77
 
78
- if not text or not text.strip():
79
- return None, None, "⚠️ Please enter some text!"
 
 
 
 
 
 
 
80
 
81
  try:
82
- prediction = None
83
- probabilities = None
84
-
85
  if model_choice == "Logistic Regression":
86
  if MODELS.get('pipeline_available'):
87
- # Use the complete pipeline (Logistic Regression)
88
  prediction = MODELS['pipeline'].predict([text])[0]
89
  probabilities = MODELS['pipeline'].predict_proba([text])[0]
90
  elif MODELS.get('vectorizer_available') and MODELS.get('lr_available'):
91
- # Use individual components
92
  X = MODELS['vectorizer'].transform([text])
93
  prediction = MODELS['logistic_regression'].predict(X)[0]
94
  probabilities = MODELS['logistic_regression'].predict_proba(X)[0]
 
 
95
 
96
  elif model_choice == "Multinomial Naive Bayes":
97
  if MODELS.get('vectorizer_available') and MODELS.get('nb_available'):
98
- # Use individual components for NB
99
  X = MODELS['vectorizer'].transform([text])
100
  prediction = MODELS['naive_bayes'].predict(X)[0]
101
  probabilities = MODELS['naive_bayes'].predict_proba(X)[0]
 
 
102
 
103
- if prediction is not None and probabilities is not None:
104
- # Convert to readable format
105
- class_names = ['Negative', 'Positive']
106
- prediction_label = class_names[prediction]
107
- status = f"✅ Prediction successful!"
108
- return prediction_label, probabilities, status
109
- else:
110
- return None, None, f"❌ Model '{model_choice}' not available!"
111
 
112
  except Exception as e:
113
- return None, None, f"Error making prediction: {str(e)}"
114
-
115
- def get_available_models() -> List[str]:
116
- """Get list of available models for selection"""
117
- if MODELS is None:
118
- return ["No models available"]
119
-
120
- available = []
121
-
122
- if MODELS.get('pipeline_available'):
123
- available.append("Logistic Regression")
124
- elif MODELS.get('vectorizer_available') and MODELS.get('lr_available'):
125
- available.append("Logistic Regression")
126
-
127
- if MODELS.get('vectorizer_available') and MODELS.get('nb_available'):
128
- available.append("Multinomial Naive Bayes")
129
-
130
- return available if available else ["No models available"]
131
 
132
- def create_probability_plot(probabilities: np.ndarray) -> plt.Figure:
133
- """Create a probability visualization"""
134
  fig, ax = plt.subplots(figsize=(8, 5))
135
 
136
- classes = ['Negative 😞', 'Positive 😊']
137
  colors = ['#ff6b6b', '#51cf66']
138
 
139
- bars = ax.bar(classes, probabilities, color=colors, alpha=0.8, edgecolor='white', linewidth=2)
140
 
141
- # Add percentage labels on bars
142
  for bar, prob in zip(bars, probabilities):
143
  height = bar.get_height()
144
  ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
145
- f'{prob:.1%}', ha='center', va='bottom', fontweight='bold', fontsize=12)
146
 
147
  ax.set_ylim(0, 1.1)
148
- ax.set_ylabel('Probability', fontsize=12, fontweight='bold')
149
- ax.set_title('Sentiment Prediction Probabilities', fontsize=14, fontweight='bold', pad=20)
150
  ax.grid(axis='y', alpha=0.3)
151
 
152
- # Style improvements
153
- ax.spines['top'].set_visible(False)
154
- ax.spines['right'].set_visible(False)
155
- ax.set_facecolor('#f8f9fa')
156
-
157
  plt.tight_layout()
158
  return fig
159
 
@@ -161,7 +142,7 @@ def create_probability_plot(probabilities: np.ndarray) -> plt.Figure:
161
  # INTERFACE FUNCTIONS
162
  # ============================================================================
163
 
164
- def predict_single_text(text: str, model_choice: str) -> Tuple[str, str, str, str, Optional[plt.Figure]]:
165
  """Single text prediction interface"""
166
  prediction, probabilities, status = make_prediction(text, model_choice)
167
 
@@ -169,63 +150,56 @@ def predict_single_text(text: str, model_choice: str) -> Tuple[str, str, str, st
169
  confidence = max(probabilities)
170
 
171
  # Format results
172
- result_text = f"🎯 **Prediction: {prediction} Sentiment**"
173
- confidence_text = f"🎯 **Confidence: {confidence:.1%}**"
 
 
 
174
 
175
- # Detailed probabilities
176
- prob_details = f"""
177
- 📊 **Detailed Probabilities:**
178
- - 😞 Negative: {probabilities[0]:.1%}
179
- - 😊 Positive: {probabilities[1]:.1%}
180
- """
181
-
182
- # Confidence interpretation
183
  if confidence >= 0.8:
184
- interpretation = "🔥 **High Confidence**: The model is very confident about this prediction."
185
  elif confidence >= 0.6:
186
- interpretation = "**Medium Confidence**: The model is reasonably confident about this prediction."
187
  else:
188
- interpretation = "⚠️ **Low Confidence**: The model is uncertain. Consider the context carefully."
189
 
190
  # Create plot
191
- plot = create_probability_plot(probabilities)
192
 
193
- return result_text, confidence_text, prob_details, interpretation, plot
194
  else:
195
- return status, "", "", "", None
196
 
197
- def process_batch_file(file, model_choice: str, max_texts: int = 100) -> Tuple[str, Optional[str]]:
198
- """Process batch file for multiple predictions"""
199
  if file is None:
200
- return "⚠️ Please upload a file!", None
201
 
202
  if MODELS is None:
203
- return "No models loaded!", None
204
 
205
  try:
206
- # Read file content
207
  if file.name.endswith('.txt'):
208
- content = file.read().decode('utf-8')
 
209
  texts = [line.strip() for line in content.split('\n') if line.strip()]
210
  elif file.name.endswith('.csv'):
211
- df = pd.read_csv(file)
212
  texts = df.iloc[:, 0].astype(str).tolist()
213
  else:
214
- return "Unsupported file format! Please use .txt or .csv files.", None
215
 
216
  if not texts:
217
- return "No text found in file!", None
218
 
219
- # Limit number of texts
220
  if len(texts) > max_texts:
221
  texts = texts[:max_texts]
222
- status_msg = f"⚠️ Processing limited to {max_texts} texts due to size constraints.\n"
223
- else:
224
- status_msg = ""
225
 
226
- # Process all texts
227
  results = []
228
-
229
  for i, text in enumerate(texts):
230
  if text.strip():
231
  prediction, probabilities, _ = make_prediction(text, model_choice)
@@ -241,526 +215,337 @@ def process_batch_file(file, model_choice: str, max_texts: int = 100) -> Tuple[s
241
  })
242
 
243
  if results:
244
- # Create results DataFrame
245
- results_df = pd.DataFrame(results)
246
-
247
- # Generate summary
248
  positive_count = sum(1 for r in results if r['Prediction'] == 'Positive')
249
  negative_count = len(results) - positive_count
250
  avg_confidence = np.mean([float(r['Confidence'].strip('%')) for r in results])
251
 
252
- summary = f"""
253
- {status_msg}✅ **Successfully processed {len(results)} texts!**
 
 
 
 
254
 
255
- 📊 **Summary Statistics:**
256
- - Total Processed: {len(results)}
257
- - 😊 Positive: {positive_count} ({positive_count/len(results):.1%})
258
- - 😞 Negative: {negative_count} ({negative_count/len(results):.1%})
259
- - Average Confidence: {avg_confidence:.1f}%
260
- """
261
 
262
- # Convert DataFrame to CSV string for download
263
- csv_string = results_df.to_csv(index=False)
 
 
264
 
265
- return summary, csv_string
266
  else:
267
- return "No valid texts could be processed!", None
268
 
269
  except Exception as e:
270
- return f"Error processing file: {str(e)}", None
271
 
272
- def compare_models(text: str) -> Tuple[str, Optional[plt.Figure]]:
273
  """Compare predictions from different models"""
274
  if MODELS is None:
275
- return "No models loaded!", None
276
 
277
- if not text or not text.strip():
278
- return "⚠️ Please enter some text to compare!", None
279
 
280
  available_models = get_available_models()
281
 
282
  if len(available_models) < 2:
283
- return "ℹ️ Need at least 2 models for comparison. Only one model available.", None
284
 
285
- comparison_results = []
 
286
 
287
  for model_name in available_models:
288
  prediction, probabilities, _ = make_prediction(text, model_name)
289
 
290
  if prediction and probabilities is not None:
291
- comparison_results.append({
292
  'Model': model_name,
293
  'Prediction': prediction,
294
  'Confidence': f"{max(probabilities):.1%}",
295
- 'Negative %': f"{probabilities[0]:.1%}",
296
- 'Positive %': f"{probabilities[1]:.1%}",
297
- 'Raw_Probs': probabilities
298
  })
 
299
 
300
- if comparison_results:
301
  # Create comparison text
302
- comparison_text = "🔍 **Model Comparison Results:**\n\n"
303
 
304
- for result in comparison_results:
305
  comparison_text += f"**{result['Model']}:**\n"
306
  comparison_text += f"- Prediction: {result['Prediction']}\n"
307
  comparison_text += f"- Confidence: {result['Confidence']}\n"
308
- comparison_text += f"- Negative: {result['Negative %']}, Positive: {result['Positive %']}\n\n"
309
 
310
  # Agreement analysis
311
- predictions = [r['Prediction'] for r in comparison_results]
312
  if len(set(predictions)) == 1:
313
- comparison_text += f"**Perfect Agreement**: All models predict **{predictions[0]} Sentiment**"
314
  else:
315
- comparison_text += "⚠️ **Models Disagree** on prediction:\n"
316
- for result in comparison_results:
317
- comparison_text += f"- {result['Model']}: {result['Prediction']}\n"
318
 
319
- # Create side-by-side comparison plot
320
- fig, axes = plt.subplots(1, len(comparison_results), figsize=(6*len(comparison_results), 5))
321
 
322
- if len(comparison_results) == 1:
323
  axes = [axes]
324
 
325
- for i, result in enumerate(comparison_results):
326
  ax = axes[i]
327
 
328
  classes = ['Negative', 'Positive']
329
  colors = ['#ff6b6b', '#51cf66']
330
 
331
- bars = ax.bar(classes, result['Raw_Probs'], color=colors, alpha=0.8)
332
 
333
- # Add percentage labels
334
- for bar, prob in zip(bars, result['Raw_Probs']):
335
  height = bar.get_height()
336
  ax.text(bar.get_x() + bar.get_width()/2., height + 0.02,
337
  f'{prob:.0%}', ha='center', va='bottom', fontweight='bold')
338
 
339
  ax.set_ylim(0, 1.1)
340
- ax.set_title(f"{result['Model']}\n{result['Prediction']}", fontweight='bold')
341
  ax.grid(axis='y', alpha=0.3)
342
-
343
- # Style
344
- ax.spines['top'].set_visible(False)
345
- ax.spines['right'].set_visible(False)
346
 
347
  plt.tight_layout()
348
 
349
  return comparison_text, fig
350
  else:
351
- return "Failed to get predictions from models!", None
352
 
353
- def get_model_info() -> str:
354
- """Get model information and status"""
355
  if MODELS is None:
356
  return """
357
- **No models loaded!**
358
 
359
- Please ensure you have the following files in the 'models/' directory:
360
  - sentiment_analysis_pipeline.pkl (complete pipeline), OR
361
  - tfidf_vectorizer.pkl + logistic_regression_model.pkl, OR
362
  - tfidf_vectorizer.pkl + multinomial_nb_model.pkl
363
  """
364
 
365
- info_text = "**Models are loaded and ready!**\n\n"
366
 
367
- # Available models
368
- info_text += "🔧 **Available Models:**\n\n"
369
 
370
  if MODELS.get('pipeline_available') or (MODELS.get('vectorizer_available') and MODELS.get('lr_available')):
371
- info_text += """
372
- **📈 Logistic Regression**
373
- - Type: Linear Classification Model
374
- - Algorithm: Logistic Regression with L2 regularization
375
- - Features: TF-IDF vectors (unigrams + bigrams)
376
- - Strengths: Fast prediction, interpretable, good baseline
377
-
378
- """
379
 
380
  if MODELS.get('vectorizer_available') and MODELS.get('nb_available'):
381
- info_text += """
382
- **🎯 Multinomial Naive Bayes**
383
- - Type: Probabilistic Classification Model
384
- - Algorithm: Multinomial Naive Bayes
385
- - Features: TF-IDF vectors (unigrams + bigrams)
386
- - Strengths: Fast training, works with small datasets
387
-
388
- """
389
-
390
- # Feature engineering
391
- info_text += """
392
- 🔤 **Feature Engineering:**
393
- - Vectorization: TF-IDF (Term Frequency-Inverse Document Frequency)
394
- - Max Features: 5,000 most important terms
395
- - N-grams: Unigrams (1-word) and Bigrams (2-word phrases)
396
- - Min Document Frequency: 2 (terms must appear in at least 2 documents)
397
- - Stop Words: English stop words removed
398
-
399
- """
400
-
401
- # File status
402
- info_text += "📁 **Model Files Status:**\n\n"
403
-
404
- files_to_check = [
405
- ("sentiment_analysis_pipeline.pkl", "Complete LR Pipeline", MODELS.get('pipeline_available', False)),
406
- ("tfidf_vectorizer.pkl", "TF-IDF Vectorizer", MODELS.get('vectorizer_available', False)),
407
- ("logistic_regression_model.pkl", "LR Classifier", MODELS.get('lr_available', False)),
408
- ("multinomial_nb_model.pkl", "NB Classifier", MODELS.get('nb_available', False))
409
  ]
410
 
411
- for filename, description, status in files_to_check:
412
  status_icon = "✅" if status else "❌"
413
- info_text += f"- {filename}: {description} {status_icon}\n"
414
-
415
- info_text += """
416
 
417
- 📚 **Training Information:**
418
- - Dataset: Product Review Sentiment Analysis
419
- - Classes: Positive and Negative sentiment
420
- - Preprocessing: Text cleaning, tokenization, TF-IDF vectorization
421
- - Training: Both models trained on same feature set for fair comparison
422
- """
423
-
424
- return info_text
425
 
426
  # ============================================================================
427
  # GRADIO INTERFACE
428
  # ============================================================================
429
 
430
- def create_interface():
431
- """Create the main Gradio interface"""
432
-
433
- # Custom CSS for better styling
434
- css = """
435
- .gradio-container {
436
- font-family: 'Arial', sans-serif;
437
- }
438
- .main-header {
439
- text-align: center;
440
- color: #1f77b4;
441
- font-size: 2.5rem;
442
- margin-bottom: 1rem;
443
- }
444
- .tab-nav {
445
- background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
446
- }
447
- """
448
 
449
- with gr.Blocks(css=css, title="ML Text Classification App", theme=gr.themes.Soft()) as app:
450
 
451
  # Header
452
  gr.HTML("""
453
- <div class="main-header">
454
- <h1>🤖 ML Text Classification App</h1>
455
- <p style="font-size: 1.2rem; color: #666;">
456
- Advanced Sentiment Analysis with Multiple ML Models
457
- </p>
458
  </div>
459
  """)
460
 
461
- # Main tabbed interface
462
  with gr.Tabs():
463
 
464
- # ============================================================================
465
- # SINGLE PREDICTION TAB
466
- # ============================================================================
467
  with gr.Tab("🔮 Single Prediction"):
468
- gr.Markdown("### Enter text below and select a model to get sentiment predictions")
469
 
470
  with gr.Row():
471
- with gr.Column(scale=2):
472
  model_dropdown = gr.Dropdown(
473
  choices=get_available_models(),
474
  value=get_available_models()[0] if get_available_models() else None,
475
- label="Choose a model",
476
- info="Select the ML model for prediction"
477
  )
478
 
479
  text_input = gr.Textbox(
480
  lines=5,
481
- placeholder="Type or paste your text here (e.g., product review, feedback, comment)...",
482
- label="Enter your text here",
483
- info="Enter any text you want to analyze for sentiment"
484
  )
485
 
486
- # Example texts
487
  with gr.Row():
488
- example_btn1 = gr.Button("Example 1", size="sm")
489
- example_btn2 = gr.Button("Example 2", size="sm")
490
- example_btn3 = gr.Button("Example 3", size="sm")
491
 
492
- predict_btn = gr.Button("🚀 Analyze Sentiment", variant="primary", size="lg")
493
 
494
- with gr.Column(scale=2):
495
- prediction_result = gr.Markdown(label="Prediction Result")
496
- confidence_result = gr.Markdown(label="Confidence")
497
- prob_details = gr.Markdown(label="Detailed Probabilities")
498
- interpretation = gr.Markdown(label="Interpretation")
499
 
500
- with gr.Row():
501
- prob_plot = gr.Plot(label="Probability Visualization")
502
-
503
- # Example text handlers
504
- example_btn1.click(
505
- lambda: "This product is absolutely amazing! Best purchase I've made this year.",
506
  outputs=text_input
507
  )
508
- example_btn2.click(
509
- lambda: "Terrible quality, broke after one day. Complete waste of money.",
510
  outputs=text_input
511
  )
512
- example_btn3.click(
513
  lambda: "It's okay, nothing special but does the job.",
514
  outputs=text_input
515
  )
516
 
517
  # Prediction handler
518
  predict_btn.click(
519
- predict_single_text,
520
  inputs=[text_input, model_dropdown],
521
- outputs=[prediction_result, confidence_result, prob_details, interpretation, prob_plot]
522
  )
523
 
524
- # ============================================================================
525
- # BATCH PROCESSING TAB
526
- # ============================================================================
527
  with gr.Tab("📁 Batch Processing"):
528
- gr.Markdown("### Upload a text file or CSV to process multiple texts at once")
529
 
530
  with gr.Row():
531
  with gr.Column():
532
  file_upload = gr.File(
533
- label="Choose a file",
534
- file_types=[".txt", ".csv"],
535
- info="Upload a .txt file (one text per line) or .csv file (text in first column)"
536
  )
537
 
538
- batch_model_dropdown = gr.Dropdown(
539
  choices=get_available_models(),
540
  value=get_available_models()[0] if get_available_models() else None,
541
- label="Choose model for batch processing"
542
  )
543
 
544
- max_texts_slider = gr.Slider(
545
  minimum=10,
546
- maximum=1000,
547
  value=100,
548
  step=10,
549
- label="Maximum texts to process",
550
- info="Limit processing for performance"
551
  )
552
 
553
- process_btn = gr.Button("📊 Process File", variant="primary", size="lg")
554
 
555
  with gr.Column():
556
- batch_results = gr.Markdown(label="Processing Results")
557
-
558
- download_file = gr.File(
559
- label="Download Results",
560
- visible=False
561
- )
562
-
563
- # File format examples
564
- with gr.Accordion("📄 Example File Formats", open=False):
565
- gr.Markdown("""
566
- **Text File (.txt):**
567
- ```
568
- This product is amazing!
569
- Terrible quality, very disappointed
570
- Great service and fast delivery
571
- ```
572
-
573
- **CSV File (.csv):**
574
- ```
575
- text,category
576
- "Amazing product, love it!",review
577
- "Poor quality, not satisfied",review
578
- ```
579
- """)
580
-
581
- # Batch processing handler
582
- def handle_batch_processing(file, model_choice, max_texts):
583
- summary, csv_data = process_batch_file(file, model_choice, max_texts)
584
-
585
- if csv_data:
586
- # Save CSV data to a temporary file for download
587
- csv_file = gr.File(value=io.StringIO(csv_data), visible=True)
588
- return summary, csv_file
589
- else:
590
- return summary, gr.File(visible=False)
591
 
 
592
  process_btn.click(
593
- handle_batch_processing,
594
- inputs=[file_upload, batch_model_dropdown, max_texts_slider],
595
- outputs=[batch_results, download_file]
596
  )
597
 
598
- # ============================================================================
599
- # MODEL COMPARISON TAB
600
- # ============================================================================
601
  with gr.Tab("⚖️ Model Comparison"):
602
- gr.Markdown("### Compare predictions from different models on the same text")
603
 
604
  with gr.Row():
605
  with gr.Column():
606
- comparison_text = gr.Textbox(
607
  lines=4,
608
- placeholder="Enter text to see how different models perform...",
609
- label="Enter text to compare models",
610
- info="Try texts with mixed sentiment for interesting comparisons"
611
  )
612
 
613
- compare_btn = gr.Button("🔍 Compare All Models", variant="primary", size="lg")
614
 
615
- # Quick examples for comparison
616
  with gr.Row():
617
  comp_ex1 = gr.Button("Mixed Example 1", size="sm")
618
  comp_ex2 = gr.Button("Mixed Example 2", size="sm")
619
- comp_ex3 = gr.Button("Mixed Example 3", size="sm")
620
 
621
  with gr.Column():
622
- comparison_results = gr.Markdown(label="Comparison Results")
623
 
624
- with gr.Row():
625
- comparison_plot = gr.Plot(label="Model Comparison Visualization")
626
 
627
- # Comparison example handlers
628
  comp_ex1.click(
629
  lambda: "This movie was okay but not great.",
630
- outputs=comparison_text
631
  )
632
  comp_ex2.click(
633
  lambda: "The product is fine, I guess.",
634
- outputs=comparison_text
635
- )
636
- comp_ex3.click(
637
- lambda: "Could be better, could be worse.",
638
- outputs=comparison_text
639
  )
640
 
641
- # Comparison handler
642
  compare_btn.click(
643
- compare_models,
644
- inputs=comparison_text,
645
- outputs=[comparison_results, comparison_plot]
646
  )
647
 
648
- # ============================================================================
649
- # MODEL INFO TAB
650
- # ============================================================================
651
  with gr.Tab("📊 Model Info"):
652
- model_info_display = gr.Markdown(
653
  value=get_model_info(),
654
  label="Model Information"
655
  )
656
 
657
- refresh_info_btn = gr.Button("🔄 Refresh Info", size="sm")
658
- refresh_info_btn.click(
659
- get_model_info,
660
- outputs=model_info_display
661
- )
662
-
663
- # ============================================================================
664
- # HELP TAB
665
- # ============================================================================
666
- with gr.Tab("❓ Help"):
667
- gr.Markdown("""
668
- ## 📚 How to Use This App
669
-
670
- ### 🔮 Single Prediction
671
- 1. **Select a model** from the dropdown (Logistic Regression or Multinomial Naive Bayes)
672
- 2. **Enter text** in the text area (product reviews, comments, feedback)
673
- 3. **Click 'Analyze Sentiment'** to get sentiment analysis results
674
- 4. **View results:** prediction, confidence score, and probability breakdown
675
- 5. **Try examples:** Use the provided example buttons to test the models
676
-
677
- ### 📁 Batch Processing
678
- 1. **Prepare your file:**
679
- - **.txt file:** One text per line
680
- - **.csv file:** Text in the first column
681
- 2. **Upload the file** using the file uploader
682
- 3. **Select a model** for processing
683
- 4. **Adjust max texts** slider if needed
684
- 5. **Click 'Process File'** to analyze all texts
685
- 6. **Download results** as CSV file with predictions and probabilities
686
-
687
- ### ⚖️ Model Comparison
688
- 1. **Enter text** you want to analyze
689
- 2. **Click 'Compare All Models'** to get predictions from both models
690
- 3. **View comparison results** showing predictions and confidence scores
691
- 4. **Analyze agreement:** See if models agree or disagree
692
- 5. **Compare visualizations:** Side-by-side probability charts
693
-
694
- ### 🔧 Troubleshooting
695
-
696
- **Models not loading:**
697
- - Ensure model files (.pkl) are in the 'models/' directory
698
- - Check that required files exist:
699
- - tfidf_vectorizer.pkl (required)
700
- - sentiment_analysis_pipeline.pkl (for LR pipeline)
701
- - logistic_regression_model.pkl (for LR individual)
702
- - multinomial_nb_model.pkl (for NB model)
703
-
704
- **Prediction errors:**
705
- - Make sure input text is not empty
706
- - Try shorter texts if getting memory errors
707
- - Check that text contains readable characters
708
-
709
- **File upload issues:**
710
- - Ensure file format is .txt or .csv
711
- - Check file encoding (should be UTF-8)
712
- - Verify CSV has text in the first column
713
-
714
- ### 💻 Project Structure
715
- ```
716
- gradio_ml_app/
717
- ├── app.py # Main application
718
- ├── requirements.txt # Dependencies
719
- ├── models/ # Model files
720
- │ ├── sentiment_analysis_pipeline.pkl # LR complete pipeline
721
- │ ├── tfidf_vectorizer.pkl # Feature extraction
722
- │ ├── logistic_regression_model.pkl # LR classifier
723
- │ └── multinomial_nb_model.pkl # NB classifier
724
- └── sample_data/ # Sample files
725
- ├── sample_texts.txt
726
- └── sample_data.csv
727
- ```
728
- """)
729
 
730
  # Footer
731
  gr.HTML("""
732
- <div style='text-align: center; color: #666666; margin-top: 2rem; padding: 1rem; border-top: 1px solid #eee;'>
733
  <p><strong>🤖 ML Text Classification App</strong></p>
734
- <p>Built with ❤️ using Gradio | Machine Learning Text Classification Demo | By Maaz Amjad</p>
735
- <p><small>As a part of the courses series <strong>Introduction to Large Language Models/Intro to AI Agents</strong></small></p>
736
- <p><small>This app demonstrates sentiment analysis using trained ML models</small></p>
737
  </div>
738
  """)
739
 
740
  return app
741
 
742
  # ============================================================================
743
- # MAIN EXECUTION
744
  # ============================================================================
745
 
746
  if __name__ == "__main__":
747
- # Check model status on startup
748
  if MODELS is None:
749
  print("⚠️ Warning: No models loaded!")
750
- print("Please ensure you have the required model files in the 'models/' directory.")
751
  else:
752
- available_models = get_available_models()
753
- print(f"✅ Successfully loaded {len(available_models)} model(s): {', '.join(available_models)}")
754
-
755
- # Create and launch the interface
756
- app = create_interface()
757
 
758
- # Launch with custom settings
 
759
  app.launch(
760
- server_name="0.0.0.0", # Make accessible from any IP
761
- server_port=7860, # Default Gradio port
762
- share=False, # Set to True to create public link
763
- debug=True, # Enable debug mode
764
- show_error=True, # Show detailed errors
765
- inbrowser=True # Open browser automatically
766
  )
 
1
+ # GRADIO ML CLASSIFICATION APP - SIMPLIFIED VERSION
2
+ # =================================================
3
 
4
  import gradio as gr
5
  import pandas as pd
6
  import numpy as np
7
  import joblib
8
  import matplotlib.pyplot as plt
 
 
 
 
9
  import warnings
10
+ import tempfile
11
+ import os
12
+ from typing import Tuple, List, Optional
13
+
14
  warnings.filterwarnings('ignore')
15
 
16
  # ============================================================================
17
+ # MODEL LOADING
18
  # ============================================================================
19
 
20
  def load_models():
 
22
  models = {}
23
 
24
  try:
25
+ # Load pipeline
26
  try:
27
  models['pipeline'] = joblib.load('models/sentiment_analysis_pipeline.pkl')
28
  models['pipeline_available'] = True
29
+ except:
30
  models['pipeline_available'] = False
31
 
32
+ # Load vectorizer
33
  try:
34
  models['vectorizer'] = joblib.load('models/tfidf_vectorizer.pkl')
35
  models['vectorizer_available'] = True
36
+ except:
37
  models['vectorizer_available'] = False
38
 
39
+ # Load LR model
40
  try:
41
  models['logistic_regression'] = joblib.load('models/logistic_regression_model.pkl')
42
  models['lr_available'] = True
43
+ except:
44
  models['lr_available'] = False
45
 
46
+ # Load NB model
47
  try:
48
  models['naive_bayes'] = joblib.load('models/multinomial_nb_model.pkl')
49
  models['nb_available'] = True
50
+ except:
51
  models['nb_available'] = False
52
 
53
+ # Check if we have working models
54
  pipeline_ready = models['pipeline_available']
55
  individual_ready = models['vectorizer_available'] and (models['lr_available'] or models['nb_available'])
56
 
57
+ return models if (pipeline_ready or individual_ready) else None
 
 
 
58
 
59
  except Exception as e:
60
  print(f"Error loading models: {e}")
 
64
  MODELS = load_models()
65
 
66
  # ============================================================================
67
+ # CORE FUNCTIONS
68
  # ============================================================================
69
 
70
+ def get_available_models():
71
+ """Get available model names"""
72
  if MODELS is None:
73
+ return ["No models available"]
74
+
75
+ available = []
76
+ if MODELS.get('pipeline_available') or (MODELS.get('vectorizer_available') and MODELS.get('lr_available')):
77
+ available.append("Logistic Regression")
78
 
79
+ if MODELS.get('vectorizer_available') and MODELS.get('nb_available'):
80
+ available.append("Multinomial Naive Bayes")
81
+
82
+ return available if available else ["No models available"]
83
+
84
+ def make_prediction(text, model_choice):
85
+ """Make prediction using selected model"""
86
+ if MODELS is None or not text.strip():
87
+ return None, None, "Please enter text and ensure models are loaded"
88
 
89
  try:
 
 
 
90
  if model_choice == "Logistic Regression":
91
  if MODELS.get('pipeline_available'):
 
92
  prediction = MODELS['pipeline'].predict([text])[0]
93
  probabilities = MODELS['pipeline'].predict_proba([text])[0]
94
  elif MODELS.get('vectorizer_available') and MODELS.get('lr_available'):
 
95
  X = MODELS['vectorizer'].transform([text])
96
  prediction = MODELS['logistic_regression'].predict(X)[0]
97
  probabilities = MODELS['logistic_regression'].predict_proba(X)[0]
98
+ else:
99
+ return None, None, "Logistic Regression model not available"
100
 
101
  elif model_choice == "Multinomial Naive Bayes":
102
  if MODELS.get('vectorizer_available') and MODELS.get('nb_available'):
 
103
  X = MODELS['vectorizer'].transform([text])
104
  prediction = MODELS['naive_bayes'].predict(X)[0]
105
  probabilities = MODELS['naive_bayes'].predict_proba(X)[0]
106
+ else:
107
+ return None, None, "Naive Bayes model not available"
108
 
109
+ # Convert prediction
110
+ class_names = ['Negative', 'Positive']
111
+ prediction_label = class_names[prediction] if isinstance(prediction, int) else str(prediction)
112
+
113
+ return prediction_label, probabilities, "Success"
 
 
 
114
 
115
  except Exception as e:
116
+ return None, None, f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
+ def create_plot(probabilities):
119
+ """Create probability plot"""
120
  fig, ax = plt.subplots(figsize=(8, 5))
121
 
122
+ classes = ['Negative', 'Positive']
123
  colors = ['#ff6b6b', '#51cf66']
124
 
125
+ bars = ax.bar(classes, probabilities, color=colors, alpha=0.8)
126
 
127
+ # Add labels
128
  for bar, prob in zip(bars, probabilities):
129
  height = bar.get_height()
130
  ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
131
+ f'{prob:.1%}', ha='center', va='bottom', fontweight='bold')
132
 
133
  ax.set_ylim(0, 1.1)
134
+ ax.set_ylabel('Probability')
135
+ ax.set_title('Sentiment Prediction Probabilities')
136
  ax.grid(axis='y', alpha=0.3)
137
 
 
 
 
 
 
138
  plt.tight_layout()
139
  return fig
140
 
 
142
  # INTERFACE FUNCTIONS
143
  # ============================================================================
144
 
145
+ def predict_text(text, model_choice):
146
  """Single text prediction interface"""
147
  prediction, probabilities, status = make_prediction(text, model_choice)
148
 
 
150
  confidence = max(probabilities)
151
 
152
  # Format results
153
+ result = f"**Prediction:** {prediction} Sentiment\n"
154
+ result += f"**Confidence:** {confidence:.1%}\n\n"
155
+ result += f"**Detailed Probabilities:**\n"
156
+ result += f"- Negative: {probabilities[0]:.1%}\n"
157
+ result += f"- Positive: {probabilities[1]:.1%}\n\n"
158
 
159
+ # Interpretation
 
 
 
 
 
 
 
160
  if confidence >= 0.8:
161
+ result += "**High Confidence:** The model is very confident about this prediction."
162
  elif confidence >= 0.6:
163
+ result += "**Medium Confidence:** The model is reasonably confident."
164
  else:
165
+ result += "**Low Confidence:** The model is uncertain about this prediction."
166
 
167
  # Create plot
168
+ plot = create_plot(probabilities)
169
 
170
+ return result, plot
171
  else:
172
+ return f"Error: {status}", None
173
 
174
+ def process_file(file, model_choice, max_texts):
175
+ """Process uploaded file"""
176
  if file is None:
177
+ return "Please upload a file!", None
178
 
179
  if MODELS is None:
180
+ return "No models loaded!", None
181
 
182
  try:
183
+ # Read file
184
  if file.name.endswith('.txt'):
185
+ with open(file.name, 'r', encoding='utf-8') as f:
186
+ content = f.read()
187
  texts = [line.strip() for line in content.split('\n') if line.strip()]
188
  elif file.name.endswith('.csv'):
189
+ df = pd.read_csv(file.name)
190
  texts = df.iloc[:, 0].astype(str).tolist()
191
  else:
192
+ return "Unsupported file format! Use .txt or .csv", None
193
 
194
  if not texts:
195
+ return "No text found in file!", None
196
 
197
+ # Limit texts
198
  if len(texts) > max_texts:
199
  texts = texts[:max_texts]
 
 
 
200
 
201
+ # Process texts
202
  results = []
 
203
  for i, text in enumerate(texts):
204
  if text.strip():
205
  prediction, probabilities, _ = make_prediction(text, model_choice)
 
215
  })
216
 
217
  if results:
218
+ # Create summary
 
 
 
219
  positive_count = sum(1 for r in results if r['Prediction'] == 'Positive')
220
  negative_count = len(results) - positive_count
221
  avg_confidence = np.mean([float(r['Confidence'].strip('%')) for r in results])
222
 
223
+ summary = f"**Processing Complete!**\n\n"
224
+ summary += f"**Summary Statistics:**\n"
225
+ summary += f"- Total Processed: {len(results)}\n"
226
+ summary += f"- Positive: {positive_count} ({positive_count/len(results):.1%})\n"
227
+ summary += f"- Negative: {negative_count} ({negative_count/len(results):.1%})\n"
228
+ summary += f"- Average Confidence: {avg_confidence:.1f}%\n"
229
 
230
+ # Create CSV for download
231
+ results_df = pd.DataFrame(results)
 
 
 
 
232
 
233
+ # Save to temporary file
234
+ with tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) as f:
235
+ results_df.to_csv(f, index=False)
236
+ temp_file = f.name
237
 
238
+ return summary, temp_file
239
  else:
240
+ return "No valid texts could be processed!", None
241
 
242
  except Exception as e:
243
+ return f"Error processing file: {str(e)}", None
244
 
245
+ def compare_models_func(text):
246
  """Compare predictions from different models"""
247
  if MODELS is None:
248
+ return "No models loaded!", None
249
 
250
+ if not text.strip():
251
+ return "Please enter text to compare!", None
252
 
253
  available_models = get_available_models()
254
 
255
  if len(available_models) < 2:
256
+ return "Need at least 2 models for comparison.", None
257
 
258
+ results = []
259
+ all_probs = []
260
 
261
  for model_name in available_models:
262
  prediction, probabilities, _ = make_prediction(text, model_name)
263
 
264
  if prediction and probabilities is not None:
265
+ results.append({
266
  'Model': model_name,
267
  'Prediction': prediction,
268
  'Confidence': f"{max(probabilities):.1%}",
269
+ 'Negative': f"{probabilities[0]:.1%}",
270
+ 'Positive': f"{probabilities[1]:.1%}"
 
271
  })
272
+ all_probs.append(probabilities)
273
 
274
+ if results:
275
  # Create comparison text
276
+ comparison_text = "**Model Comparison Results:**\n\n"
277
 
278
+ for result in results:
279
  comparison_text += f"**{result['Model']}:**\n"
280
  comparison_text += f"- Prediction: {result['Prediction']}\n"
281
  comparison_text += f"- Confidence: {result['Confidence']}\n"
282
+ comparison_text += f"- Negative: {result['Negative']}, Positive: {result['Positive']}\n\n"
283
 
284
  # Agreement analysis
285
+ predictions = [r['Prediction'] for r in results]
286
  if len(set(predictions)) == 1:
287
+ comparison_text += f"**Agreement:** All models agree on {predictions[0]} sentiment!"
288
  else:
289
+ comparison_text += "**Disagreement:** Models have different predictions."
 
 
290
 
291
+ # Create comparison plot
292
+ fig, axes = plt.subplots(1, len(results), figsize=(6*len(results), 5))
293
 
294
+ if len(results) == 1:
295
  axes = [axes]
296
 
297
+ for i, (result, probs) in enumerate(zip(results, all_probs)):
298
  ax = axes[i]
299
 
300
  classes = ['Negative', 'Positive']
301
  colors = ['#ff6b6b', '#51cf66']
302
 
303
+ bars = ax.bar(classes, probs, color=colors, alpha=0.8)
304
 
305
+ # Add labels
306
+ for bar, prob in zip(bars, probs):
307
  height = bar.get_height()
308
  ax.text(bar.get_x() + bar.get_width()/2., height + 0.02,
309
  f'{prob:.0%}', ha='center', va='bottom', fontweight='bold')
310
 
311
  ax.set_ylim(0, 1.1)
312
+ ax.set_title(f"{result['Model']}\n{result['Prediction']}")
313
  ax.grid(axis='y', alpha=0.3)
 
 
 
 
314
 
315
  plt.tight_layout()
316
 
317
  return comparison_text, fig
318
  else:
319
+ return "Failed to get predictions!", None
320
 
321
+ def get_model_info():
322
+ """Get model information"""
323
  if MODELS is None:
324
  return """
325
+ **No models loaded!**
326
 
327
+ Please ensure you have model files in the 'models/' directory:
328
  - sentiment_analysis_pipeline.pkl (complete pipeline), OR
329
  - tfidf_vectorizer.pkl + logistic_regression_model.pkl, OR
330
  - tfidf_vectorizer.pkl + multinomial_nb_model.pkl
331
  """
332
 
333
+ info = "**Models loaded successfully!**\n\n"
334
 
335
+ info += "**Available Models:**\n\n"
 
336
 
337
  if MODELS.get('pipeline_available') or (MODELS.get('vectorizer_available') and MODELS.get('lr_available')):
338
+ info += "**Logistic Regression**\n"
339
+ info += "- Type: Linear Classification\n"
340
+ info += "- Features: TF-IDF vectors\n"
341
+ info += "- Strengths: Fast, interpretable\n\n"
 
 
 
 
342
 
343
  if MODELS.get('vectorizer_available') and MODELS.get('nb_available'):
344
+ info += "**Multinomial Naive Bayes**\n"
345
+ info += "- Type: Probabilistic Classification\n"
346
+ info += "- Features: TF-IDF vectors\n"
347
+ info += "- Strengths: Works well with small data\n\n"
348
+
349
+ info += "**File Status:**\n"
350
+ files = [
351
+ ("sentiment_analysis_pipeline.pkl", MODELS.get('pipeline_available', False)),
352
+ ("tfidf_vectorizer.pkl", MODELS.get('vectorizer_available', False)),
353
+ ("logistic_regression_model.pkl", MODELS.get('lr_available', False)),
354
+ ("multinomial_nb_model.pkl", MODELS.get('nb_available', False))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355
  ]
356
 
357
+ for filename, status in files:
358
  status_icon = "✅" if status else "❌"
359
+ info += f"- {filename}: {status_icon}\n"
 
 
360
 
361
+ return info
 
 
 
 
 
 
 
362
 
363
  # ============================================================================
364
  # GRADIO INTERFACE
365
  # ============================================================================
366
 
367
+ def create_app():
368
+ """Create Gradio interface"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369
 
370
+ with gr.Blocks(title="ML Text Classification") as app:
371
 
372
  # Header
373
  gr.HTML("""
374
+ <div style="text-align: center; margin-bottom: 2rem;">
375
+ <h1 style="color: #1f77b4; font-size: 2.5rem;">🤖 ML Text Classification App</h1>
376
+ <p style="font-size: 1.2rem; color: #666;">Advanced Sentiment Analysis with Multiple ML Models</p>
 
 
377
  </div>
378
  """)
379
 
380
+ # Main interface with tabs
381
  with gr.Tabs():
382
 
383
+ # Single Prediction Tab
 
 
384
  with gr.Tab("🔮 Single Prediction"):
385
+ gr.Markdown("### Enter text and select a model for sentiment analysis")
386
 
387
  with gr.Row():
388
+ with gr.Column(scale=1):
389
  model_dropdown = gr.Dropdown(
390
  choices=get_available_models(),
391
  value=get_available_models()[0] if get_available_models() else None,
392
+ label="Choose Model"
 
393
  )
394
 
395
  text_input = gr.Textbox(
396
  lines=5,
397
+ placeholder="Enter your text here...",
398
+ label="Text Input"
 
399
  )
400
 
 
401
  with gr.Row():
402
+ example1_btn = gr.Button("Good Example", size="sm")
403
+ example2_btn = gr.Button("Bad Example", size="sm")
404
+ example3_btn = gr.Button("Neutral Example", size="sm")
405
 
406
+ predict_btn = gr.Button("🚀 Analyze Sentiment", variant="primary")
407
 
408
+ with gr.Column(scale=1):
409
+ prediction_output = gr.Markdown(label="Results")
410
+ prediction_plot = gr.Plot(label="Probability Chart")
 
 
411
 
412
+ # Example handlers
413
+ example1_btn.click(
414
+ lambda: "This product is absolutely amazing! Best purchase ever!",
 
 
 
415
  outputs=text_input
416
  )
417
+ example2_btn.click(
418
+ lambda: "Terrible quality, broke immediately. Waste of money!",
419
  outputs=text_input
420
  )
421
+ example3_btn.click(
422
  lambda: "It's okay, nothing special but does the job.",
423
  outputs=text_input
424
  )
425
 
426
  # Prediction handler
427
  predict_btn.click(
428
+ predict_text,
429
  inputs=[text_input, model_dropdown],
430
+ outputs=[prediction_output, prediction_plot]
431
  )
432
 
433
+ # Batch Processing Tab
 
 
434
  with gr.Tab("📁 Batch Processing"):
435
+ gr.Markdown("### Upload a file to process multiple texts")
436
 
437
  with gr.Row():
438
  with gr.Column():
439
  file_upload = gr.File(
440
+ label="Upload File (.txt or .csv)",
441
+ file_types=[".txt", ".csv"]
 
442
  )
443
 
444
+ batch_model = gr.Dropdown(
445
  choices=get_available_models(),
446
  value=get_available_models()[0] if get_available_models() else None,
447
+ label="Model for Batch Processing"
448
  )
449
 
450
+ max_texts = gr.Slider(
451
  minimum=10,
452
+ maximum=500,
453
  value=100,
454
  step=10,
455
+ label="Max Texts to Process"
 
456
  )
457
 
458
+ process_btn = gr.Button("📊 Process File", variant="primary")
459
 
460
  with gr.Column():
461
+ batch_output = gr.Markdown(label="Processing Results")
462
+ download_file = gr.File(label="Download Results")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463
 
464
+ # Process handler
465
  process_btn.click(
466
+ process_file,
467
+ inputs=[file_upload, batch_model, max_texts],
468
+ outputs=[batch_output, download_file]
469
  )
470
 
471
+ # Model Comparison Tab
 
 
472
  with gr.Tab("⚖️ Model Comparison"):
473
+ gr.Markdown("### Compare predictions from different models")
474
 
475
  with gr.Row():
476
  with gr.Column():
477
+ comparison_input = gr.Textbox(
478
  lines=4,
479
+ placeholder="Enter text to compare models...",
480
+ label="Text for Comparison"
 
481
  )
482
 
483
+ compare_btn = gr.Button("🔍 Compare Models", variant="primary")
484
 
 
485
  with gr.Row():
486
  comp_ex1 = gr.Button("Mixed Example 1", size="sm")
487
  comp_ex2 = gr.Button("Mixed Example 2", size="sm")
 
488
 
489
  with gr.Column():
490
+ comparison_output = gr.Markdown(label="Comparison Results")
491
 
492
+ comparison_plot = gr.Plot(label="Model Comparison")
 
493
 
494
+ # Example handlers
495
  comp_ex1.click(
496
  lambda: "This movie was okay but not great.",
497
+ outputs=comparison_input
498
  )
499
  comp_ex2.click(
500
  lambda: "The product is fine, I guess.",
501
+ outputs=comparison_input
 
 
 
 
502
  )
503
 
504
+ # Compare handler
505
  compare_btn.click(
506
+ compare_models_func,
507
+ inputs=comparison_input,
508
+ outputs=[comparison_output, comparison_plot]
509
  )
510
 
511
+ # Model Info Tab
 
 
512
  with gr.Tab("📊 Model Info"):
513
+ model_info = gr.Markdown(
514
  value=get_model_info(),
515
  label="Model Information"
516
  )
517
 
518
+ refresh_btn = gr.Button("🔄 Refresh", size="sm")
519
+ refresh_btn.click(get_model_info, outputs=model_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
520
 
521
  # Footer
522
  gr.HTML("""
523
+ <div style="text-align: center; margin-top: 2rem; padding: 1rem; border-top: 1px solid #eee; color: #666;">
524
  <p><strong>🤖 ML Text Classification App</strong></p>
525
+ <p>Built with Gradio | By Maaz Amjad</p>
526
+ <p><small>Part of Introduction to Large Language Models course</small></p>
 
527
  </div>
528
  """)
529
 
530
  return app
531
 
532
  # ============================================================================
533
+ # MAIN
534
  # ============================================================================
535
 
536
  if __name__ == "__main__":
537
+ # Check models
538
  if MODELS is None:
539
  print("⚠️ Warning: No models loaded!")
 
540
  else:
541
+ available = get_available_models()
542
+ print(f"✅ Successfully loaded {len(available)} model(s): {', '.join(available)}")
 
 
 
543
 
544
+ # Launch app
545
+ app = create_app()
546
  app.launch(
547
+ server_name="0.0.0.0",
548
+ server_port=7860,
549
+ share=False,
550
+ debug=True
 
 
551
  )