macadeliccc commited on
Commit
7f45d73
·
1 Parent(s): 94c19a4
Files changed (1) hide show
  1. app.py +1 -40
app.py CHANGED
@@ -9,14 +9,6 @@ import uuid
9
  import io
10
  import os
11
 
12
- # Load the base & refiner pipelines
13
- base = DiffusionPipeline.from_pretrained(
14
- "stabilityai/stable-diffusion-xl-base-1.0",
15
- torch_dtype=torch.float16,
16
- variant="fp16",
17
- use_safetensors=True
18
- )
19
- base.to("cuda:0")
20
 
21
  # Load your model
22
  pipe = StableDiffusionXLPipeline.from_pretrained(
@@ -25,6 +17,7 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
25
  use_safetensors=True,
26
  variant="fp16"
27
  )
 
28
  pipe.to("cuda:0")
29
 
30
 
@@ -45,19 +38,6 @@ def generate_and_save_image(prompt, negative_prompt=''):
45
  # Return the path of the saved image to display in Gradio interface
46
  return image_path
47
 
48
- def generate_image_with_refinement(prompt):
49
- n_steps = 40
50
- high_noise_frac = 0.8
51
-
52
- # run both experts
53
- image = base(prompt=prompt).images[0]
54
- # Save the image as before
55
- unique_id = str(uuid.uuid4())
56
- image_path = f"generated_images_refined/{unique_id}.jpeg"
57
- os.makedirs('generated_images_refined', exist_ok=True)
58
- image.save(image_path, format='JPEG')
59
-
60
- return image_path
61
 
62
  # Start of the Gradio Blocks interface
63
  with gr.Blocks() as demo:
@@ -83,25 +63,6 @@ with gr.Blocks() as demo:
83
  outputs=output_image1
84
  )
85
 
86
- with gr.Column():
87
- gr.Markdown("## SDXL 1.0")
88
- gr.Markdown("Enter a prompt to generate an image.")
89
-
90
- # Input field for the prompt
91
- prompt2 = gr.Textbox(label="Enter prompt for refined generation")
92
-
93
- # Button for generating the refined image
94
- generate_button2 = gr.Button("Generate Refined Image")
95
-
96
- # Output refined image display, set to a larger default size
97
- output_image2 = gr.Image(label="Generated Refined Image")
98
-
99
- # Click event for the generate button
100
- generate_button2.click(
101
- generate_image_with_refinement,
102
- inputs=[prompt2],
103
- outputs=output_image2
104
- )
105
 
106
  # Launch the combined Gradio app
107
  demo.launch()
 
9
  import io
10
  import os
11
 
 
 
 
 
 
 
 
 
12
 
13
  # Load your model
14
  pipe = StableDiffusionXLPipeline.from_pretrained(
 
17
  use_safetensors=True,
18
  variant="fp16"
19
  )
20
+
21
  pipe.to("cuda:0")
22
 
23
 
 
38
  # Return the path of the saved image to display in Gradio interface
39
  return image_path
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  # Start of the Gradio Blocks interface
43
  with gr.Blocks() as demo:
 
63
  outputs=output_image1
64
  )
65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  # Launch the combined Gradio app
68
  demo.launch()