macadeliccc commited on
Commit
821bcb4
·
verified ·
1 Parent(s): dfb4a63

change app to chat application to keep GPU

Browse files
Files changed (1) hide show
  1. app.py +77 -151
app.py CHANGED
@@ -1,156 +1,82 @@
1
  import spaces
2
  import gradio as gr
3
  import torch
4
- from diffusers import LCMScheduler, AutoPipelineForText2Image
5
- from diffusers import AutoPipelineForInpainting, LCMScheduler
6
- from diffusers import DiffusionPipeline, LCMScheduler
7
- from PIL import Image, ImageEnhance
8
- import io
9
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  @spaces.GPU
11
- def generate_image(prompt, num_inference_steps, guidance_scale):
12
- model_id = "stabilityai/stable-diffusion-xl-base-1.0"
13
- adapter_id = "latent-consistency/lcm-lora-sdxl"
14
-
15
- pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, variant="fp16")
16
- pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
17
- pipe.to("cuda")
18
-
19
- # Load and fuse lcm lora
20
- pipe.load_lora_weights(adapter_id)
21
- pipe.fuse_lora()
22
-
23
- # Generate the image
24
- image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0]
25
-
26
- return image
27
-
28
- def inpaint_image(prompt, init_image, mask_image, num_inference_steps, guidance_scale):
29
- pipe = AutoPipelineForInpainting.from_pretrained(
30
- "diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
31
- torch_dtype=torch.float32,
32
- variant="fp16",
33
- ).to("cuda")
34
- pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
35
- pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl")
36
- pipe.fuse_lora()
37
-
38
- if init_image is not None:
39
- init_image_path = init_image.name # Get the file path
40
- init_image = Image.open(init_image_path).resize((1024, 1024))
41
- else:
42
- raise ValueError("Initial image not provided or invalid")
43
-
44
- if mask_image is not None:
45
- mask_image_path = mask_image.name # Get the file path
46
- mask_image = Image.open(mask_image_path).resize((1024, 1024))
47
- else:
48
- raise ValueError("Mask image not provided or invalid")
49
-
50
- # Generate the inpainted image
51
- generator = torch.manual_seed(42)
52
- image = pipe(
53
- prompt=prompt,
54
- image=init_image,
55
- mask_image=mask_image,
56
- generator=generator,
57
- num_inference_steps=num_inference_steps,
58
- guidance_scale=guidance_scale,
59
- ).images[0]
60
-
61
- return image
62
-
63
- def generate_image_with_adapter(prompt, num_inference_steps, guidance_scale):
64
- pipe = DiffusionPipeline.from_pretrained(
65
- "stabilityai/stable-diffusion-xl-base-1.0",
66
- variant="fp16",
67
- torch_dtype=torch.float32
68
- ).to("cuda")
69
-
70
- # set scheduler
71
- pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
72
-
73
- # Load and fuse lcm lora
74
- pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm")
75
- pipe.load_lora_weights("TheLastBen/Papercut_SDXL", weight_name="papercut.safetensors", adapter_name="papercut")
76
-
77
- # Combine LoRAs
78
- pipe.set_adapters(["lcm", "papercut"], adapter_weights=[1.0, 0.8])
79
- pipe.fuse_lora()
80
- generator = torch.manual_seed(0)
81
- # Generate the image
82
- image = pipe(prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator).images[0]
83
- pipe.unfuse_lora()
84
- return image
85
-
86
-
87
- def modify_image(image, brightness, contrast):
88
- # Function to modify brightness and contrast
89
- image = Image.open(io.BytesIO(image))
90
- enhancer = ImageEnhance.Brightness(image)
91
- image = enhancer.enhance(brightness)
92
- enhancer = ImageEnhance.Contrast(image)
93
- image = enhancer.enhance(contrast)
94
- return image
95
-
96
- with gr.Blocks(gr.themes.Soft()) as demo:
97
- with gr.Row():
98
- gr.Markdown("## Latent Consistency for Diffusion Models")
99
- gr.Markdown("Run this demo on your own machine if you would like: ```docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all \
100
- registry.hf.space/macadeliccc-lcm-papercut-demo:latest python app.py```")
101
- with gr.Row():
102
- image_output = gr.Image(label="Generated Image")
103
-
104
- with gr.Row():
105
- with gr.Accordion(label="Configuration Options"):
106
- prompt_input = gr.Textbox(label="Prompt", placeholder="Self-portrait oil painting, a beautiful cyborg with golden hair, 8k")
107
- steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
108
- guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
109
- generate_button = gr.Button("Generate Image")
110
- with gr.Row():
111
- with gr.Accordion(label="Papercut Image Generation"):
112
- adapter_prompt_input = gr.Textbox(label="Prompt", placeholder="papercut, a cute fox")
113
- adapter_steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
114
- adapter_guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
115
- adapter_generate_button = gr.Button("Generate Image with Adapter")
116
-
117
- with gr.Row():
118
- with gr.Accordion(label="Inpainting"):
119
- inpaint_prompt_input = gr.Textbox(label="Prompt for Inpainting", placeholder="a castle on top of a mountain, highly detailed, 8k")
120
- init_image_input = gr.File(label="Initial Image")
121
- mask_image_input = gr.File(label="Mask Image")
122
- inpaint_steps_input = gr.Slider(minimum=1, maximum=10, label="Inference Steps", value=4)
123
- inpaint_guidance_input = gr.Slider(minimum=0, maximum=2, label="Guidance Scale", value=1)
124
- inpaint_button = gr.Button("Inpaint Image")
125
-
126
- with gr.Row():
127
- with gr.Accordion(label="Image Modification (Experimental)"):
128
- brightness_slider = gr.Slider(minimum=0.5, maximum=1.5, step=1, label="Brightness")
129
- contrast_slider = gr.Slider(minimum=0.5, maximum=1.5, step=1, label="Contrast")
130
- modify_button = gr.Button("Modify Image")
131
-
132
-
133
-
134
- generate_button.click(
135
- generate_image,
136
- inputs=[prompt_input, steps_input, guidance_input],
137
- outputs=image_output
138
- )
139
-
140
- modify_button.click(
141
- modify_image,
142
- inputs=[image_output, brightness_slider, contrast_slider],
143
- outputs=image_output
144
  )
145
- inpaint_button.click(
146
- inpaint_image,
147
- inputs=[inpaint_prompt_input, init_image_input, mask_image_input, inpaint_steps_input, inpaint_guidance_input],
148
- outputs=image_output
149
- )
150
- adapter_generate_button.click(
151
- generate_image_with_adapter,
152
- inputs=[adapter_prompt_input, adapter_steps_input, adapter_guidance_input],
153
- outputs=image_output
154
- )
155
-
156
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import spaces
2
  import gradio as gr
3
  import torch
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
6
+ from threading import Thread
7
+
8
+
9
+ torch.set_default_device("cuda")
10
+
11
+ # Loading the tokenizer and model from Hugging Face's model hub.
12
+ tokenizer = AutoTokenizer.from_pretrained(
13
+ "macadeliccc/SOLAR-math-2x10.7b",
14
+ trust_remote_code=True
15
+ )
16
+ model = AutoModelForCausalLM.from_pretrained(
17
+ "macadeliccc/SOLAR-math-2x10.7b",
18
+ torch_dtype="auto",
19
+ load_in_8bit=True,
20
+ trust_remote_code=True
21
+ )
22
+
23
+ # Defining a custom stopping criteria class for the model's text generation.
24
+ class StopOnTokens(StoppingCriteria):
25
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
26
+ stop_ids = [50256, 50295] # IDs of tokens where the generation should stop.
27
+ for stop_id in stop_ids:
28
+ if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
29
+ return True
30
+ return False
31
+
32
+
33
+ # Function to generate model predictions.
34
  @spaces.GPU
35
+ def predict(message, history):
36
+ history_transformer_format = history + [[message, ""]]
37
+ stop = StopOnTokens()
38
+
39
+ # Formatting the input for the model.
40
+ system_prompt = "<|im_start|>system\nYou are Solar, a helpful AI assistant.<|im_end|>"
41
+ messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format])
42
+ input_ids = tokenizer([messages], return_tensors="pt").to('cuda')
43
+ streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
44
+ generate_kwargs = dict(
45
+ input_ids,
46
+ streamer=streamer,
47
+ max_new_tokens=1024,
48
+ do_sample=True,
49
+ top_p=0.95,
50
+ top_k=50,
51
+ temperature=0.7,
52
+ num_beams=1,
53
+ stopping_criteria=StoppingCriteriaList([stop])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  )
55
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
56
+ t.start() # Starting the generation in a separate thread.
57
+ partial_message = ""
58
+ for new_token in streamer:
59
+ partial_message += new_token
60
+ if '<|im_end|>' in partial_message: # Breaking the loop if the stop token is generated.
61
+ break
62
+ yield partial_message
63
+
64
+
65
+ # Setting up the Gradio chat interface.
66
+ gr.ChatInterface(predict,
67
+ description="""
68
+ <center><img src="https://huggingface.co/macadeliccc/SOLAR-math-2x10.7b-v0.2/resolve/main/solar.png" width="33%"></center>\n\n
69
+ Chat with [macadeliccc/SOLAR-math-2x10.7b-v0.2](https://huggingface.co/macadeliccc/SOLAR-math-2x10.7b-v0.2), the first Mixture of Experts made by merging two fine-tuned [upstage/SOLAR-10.7B-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-v1.0) models.
70
+ This large model (19.2B param) is good for various tasks, such as programming, dialogues, story writing, and more.\n\n
71
+ ❤️ If you like this work, please follow me on [Hugging Face](https://huggingface.co/macadeliccc) and [LinkedIn](https://www.linkedin.com/in/tim-dolan-python-dev/).
72
+ """,
73
+ examples=[
74
+ 'Can you solve the equation 2x + 3 = 11 for x?',
75
+ 'How does Fermats last theorem impact number theory?',
76
+ 'What is a vector in the scope of computer science rather than physics?',
77
+ 'Use a list comprehension to create a list of squares for numbers from 1 to 10.',
78
+ 'Recommend some popular science fiction books.',
79
+ 'Can you write a short story about a time-traveling detective?'
80
+ ],
81
+ theme=gr.themes.Soft(primary_hue="orange"),
82
+ ).launch()