import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread @spaces.GPU def predict(message, history): torch.set_default_device("cuda") # Load model and tokenizer model_id = "LiquidAI/LFM2-1.2B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True, load_in_4bit=True, # Keeping 4-bit quantization for efficiency # attn_implementation="flash_attention_2" # Uncomment on compatible GPU ) # Format conversation history for chat template messages = [{"role": "user" if i % 2 == 0 else "assistant", "content": msg} for conv in history for i, msg in enumerate(conv) if msg] messages.append({"role": "user", "content": message}) # Apply chat template input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt", tokenize=True ).to('cuda') # Setup streamer for real-time output streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) # Generation parameters generate_kwargs = dict( input_ids=input_ids, streamer=streamer, max_new_tokens=256, do_sample=True, temperature=0.3, min_p=0.15, repetition_penalty=1.05, pad_token_id=tokenizer.eos_token_id ) # Start generation in separate thread t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Stream tokens partial_message = "" for new_token in streamer: partial_message += new_token yield partial_message # Setup Gradio interface gr.ChatInterface( predict, description="""