macapa commited on
Commit
5dc5a14
verified
1 Parent(s): ad5047a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -7
app.py CHANGED
@@ -1,19 +1,53 @@
1
  import gradio as gr
 
 
 
 
 
 
2
 
 
 
 
3
 
4
- def hello_world(name):
5
- return "Hello " + name + "!"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  # Definir la interfaz de Gradio
8
  interface = gr.Interface(
9
- fn=hello_world,
10
- inputs=gr.Textbox(label="Ingresa tu nombre: "),
11
- # outputs=gr.Label(num_top_classes=1),
12
- outputs=gr.Textbox(label="Saludo: "),
13
  title="Blindness Classification",
14
  description="Classify the severity of blindness from retinal images."
15
  )
16
 
17
 
18
  # Ejecutar la aplicaci贸n
19
- interface.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from huggingface_hub import hf_hub_download
4
+ from torchvision import transforms
5
+ from PIL import Image
6
+ import requests
7
+ import os
8
 
9
+ # URL del modelo en Hugging Face
10
+ model_url = "https://huggingface.co/macapa/blindness_clas/resolve/main/blindness_model.pth"
11
+ model_path = "best_model_resnet18.pth"
12
 
13
+
14
+ hf_hub_download(
15
+ repo_id='macapa/blindness_clas',
16
+ filename='best_model_resnet18.pth',
17
+ local_dir='.'
18
+ )
19
+
20
+
21
+ # Cargar el modelo PyTorch
22
+ model = torch.load(model_path, map_location=torch.device('cpu'))
23
+ # model.eval()
24
+
25
+ # Definir las transformaciones de la imagen
26
+ preprocess = transforms.Compose([
27
+ transforms.Resize((256, 256)),
28
+ transforms.ToTensor(),
29
+ ])
30
+
31
+ # Definir las etiquetas de clasificaci贸n
32
+ labels = ["No Blindness", "Mild", "Moderate", "Severe", "Proliferative"]
33
+
34
+ # Funci贸n para predecir la clase de ceguera
35
+ def classify_image(img):
36
+ img = preprocess(img).unsqueeze(0)
37
+ with torch.no_grad():
38
+ outputs = model(img)
39
+ _, predicted = torch.max(outputs, 1)
40
+ return labels[predicted.item()]
41
 
42
  # Definir la interfaz de Gradio
43
  interface = gr.Interface(
44
+ fn=classify_image,
45
+ inputs=gr.Image(label="Carga una imagen aqu铆"),
46
+ outputs=gr.Label(num_top_classes=1),
 
47
  title="Blindness Classification",
48
  description="Classify the severity of blindness from retinal images."
49
  )
50
 
51
 
52
  # Ejecutar la aplicaci贸n
53
+ interface.launch()