File size: 18,211 Bytes
2bf74f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
import os
import re
import tempfile
import time
from glob import iglob
from io import BytesIO
import numpy as np
import streamlit as st
import torch
from einops import rearrange
from PIL import ExifTags, Image
from st_keyup import st_keyup
from streamlit_drawable_canvas import st_canvas
from transformers import pipeline
from flux.sampling import denoise, get_noise, get_schedule, prepare_fill, unpack
from flux.util import embed_watermark, load_ae, load_clip, load_flow_model, load_t5
NSFW_THRESHOLD = 0.85
def add_border_and_mask(image, zoom_all=1.0, zoom_left=0, zoom_right=0, zoom_up=0, zoom_down=0, overlap=0):
"""Adds a black border around the image with individual side control and mask overlap"""
orig_width, orig_height = image.size
# Calculate padding for each side (in pixels)
left_pad = int(orig_width * zoom_left)
right_pad = int(orig_width * zoom_right)
top_pad = int(orig_height * zoom_up)
bottom_pad = int(orig_height * zoom_down)
# Calculate overlap in pixels
overlap_left = int(orig_width * overlap)
overlap_right = int(orig_width * overlap)
overlap_top = int(orig_height * overlap)
overlap_bottom = int(orig_height * overlap)
# If using the all-sides zoom, add it to each side
if zoom_all > 1.0:
extra_each_side = (zoom_all - 1.0) / 2
left_pad += int(orig_width * extra_each_side)
right_pad += int(orig_width * extra_each_side)
top_pad += int(orig_height * extra_each_side)
bottom_pad += int(orig_height * extra_each_side)
# Calculate new dimensions (ensure they're multiples of 32)
new_width = 32 * round((orig_width + left_pad + right_pad) / 32)
new_height = 32 * round((orig_height + top_pad + bottom_pad) / 32)
# Create new image with black border
bordered_image = Image.new("RGB", (new_width, new_height), (0, 0, 0))
# Paste original image in position
paste_x = left_pad
paste_y = top_pad
bordered_image.paste(image, (paste_x, paste_y))
# Create mask (white where the border is, black where the original image was)
mask = Image.new("L", (new_width, new_height), 255) # White background
# Paste black rectangle with overlap adjustment
mask.paste(
0,
(
paste_x + overlap_left, # Left edge moves right
paste_y + overlap_top, # Top edge moves down
paste_x + orig_width - overlap_right, # Right edge moves left
paste_y + orig_height - overlap_bottom, # Bottom edge moves up
),
)
return bordered_image, mask
@st.cache_resource()
def get_models(name: str, device: torch.device, offload: bool):
t5 = load_t5(device, max_length=128)
clip = load_clip(device)
model = load_flow_model(name, device="cpu" if offload else device)
ae = load_ae(name, device="cpu" if offload else device)
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
return model, ae, t5, clip, nsfw_classifier
def resize(img: Image.Image, min_mp: float = 0.5, max_mp: float = 2.0) -> Image.Image:
width, height = img.size
mp = (width * height) / 1_000_000 # Current megapixels
if min_mp <= mp <= max_mp:
# Even if MP is in range, ensure dimensions are multiples of 32
new_width = int(32 * round(width / 32))
new_height = int(32 * round(height / 32))
if new_width != width or new_height != height:
return img.resize((new_width, new_height), Image.Resampling.LANCZOS)
return img
# Calculate scaling factor
if mp < min_mp:
scale = (min_mp / mp) ** 0.5
else: # mp > max_mp
scale = (max_mp / mp) ** 0.5
new_width = int(32 * round(width * scale / 32))
new_height = int(32 * round(height * scale / 32))
return img.resize((new_width, new_height), Image.Resampling.LANCZOS)
def clear_canvas_state():
"""Clear all canvas-related state"""
keys_to_clear = ["canvas", "last_image_dims"]
for key in keys_to_clear:
if key in st.session_state:
del st.session_state[key]
def set_new_image(img: Image.Image):
"""Safely set a new image and clear relevant state"""
st.session_state["current_image"] = img
clear_canvas_state()
st.rerun()
def downscale_image(img: Image.Image, scale_factor: float) -> Image.Image:
"""Downscale image by a given factor while maintaining 32-pixel multiple dimensions"""
if scale_factor >= 1.0:
return img
width, height = img.size
new_width = int(32 * round(width * scale_factor / 32))
new_height = int(32 * round(height * scale_factor / 32))
# Ensure minimum dimensions
new_width = max(64, new_width) # minimum 64 pixels
new_height = max(64, new_height) # minimum 64 pixels
return img.resize((new_width, new_height), Image.Resampling.LANCZOS)
@torch.inference_mode()
def main(
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
output_dir: str = "output",
):
torch_device = torch.device(device)
st.title("Flux Fill: Inpainting & Outpainting")
# Model selection and loading
name = "flux-dev-fill"
if not st.checkbox("Load model", False):
return
try:
model, ae, t5, clip, nsfw_classifier = get_models(
name,
device=torch_device,
offload=offload,
)
except Exception as e:
st.error(f"Error loading models: {e}")
return
# Mode selection
mode = st.radio("Select Mode", ["Inpainting", "Outpainting"])
# Image handling - either from previous generation or new upload
if "input_image" in st.session_state:
image = st.session_state["input_image"]
del st.session_state["input_image"]
set_new_image(image)
st.write("Continuing from previous result")
else:
uploaded_image = st.file_uploader("Upload image", type=["jpg", "jpeg", "png"])
if uploaded_image is None:
st.warning("Please upload an image")
return
if (
"current_image_name" not in st.session_state
or st.session_state["current_image_name"] != uploaded_image.name
):
try:
image = Image.open(uploaded_image).convert("RGB")
st.session_state["current_image_name"] = uploaded_image.name
set_new_image(image)
except Exception as e:
st.error(f"Error loading image: {e}")
return
else:
image = st.session_state.get("current_image")
if image is None:
st.error("Error: Image state is invalid. Please reupload the image.")
clear_canvas_state()
return
# Add downscale control
with st.expander("Image Size Control"):
current_mp = (image.size[0] * image.size[1]) / 1_000_000
st.write(f"Current image size: {image.size[0]}x{image.size[1]} ({current_mp:.1f}MP)")
scale_factor = st.slider(
"Downscale Factor",
min_value=0.1,
max_value=1.0,
value=1.0,
step=0.1,
help="1.0 = original size, 0.5 = half size, etc.",
)
if scale_factor < 1.0 and st.button("Apply Downscaling"):
image = downscale_image(image, scale_factor)
set_new_image(image)
st.rerun()
# Resize image with validation
try:
original_mp = (image.size[0] * image.size[1]) / 1_000_000
image = resize(image)
width, height = image.size
current_mp = (width * height) / 1_000_000
if width % 32 != 0 or height % 32 != 0:
st.error("Error: Image dimensions must be multiples of 32")
return
st.write(f"Image dimensions: {width}x{height} pixels")
if original_mp != current_mp:
st.write(
f"Image has been resized from {original_mp:.1f}MP to {current_mp:.1f}MP to stay within bounds (0.5MP - 2MP)"
)
except Exception as e:
st.error(f"Error processing image: {e}")
return
if mode == "Outpainting":
# Outpainting controls
zoom_all = st.slider("Zoom Out Amount (All Sides)", min_value=1.0, max_value=3.0, value=1.0, step=0.1)
with st.expander("Advanced Zoom Controls"):
st.info("These controls add additional zoom to specific sides")
col1, col2 = st.columns(2)
with col1:
zoom_left = st.slider("Left", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
zoom_right = st.slider("Right", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
with col2:
zoom_up = st.slider("Up", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
zoom_down = st.slider("Down", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
overlap = st.slider("Overlap", min_value=0.01, max_value=0.25, value=0.01, step=0.01)
# Generate bordered image and mask
image_for_generation, mask = add_border_and_mask(
image,
zoom_all=zoom_all,
zoom_left=zoom_left,
zoom_right=zoom_right,
zoom_up=zoom_up,
zoom_down=zoom_down,
overlap=overlap,
)
width, height = image_for_generation.size
# Show preview
col1, col2 = st.columns(2)
with col1:
st.image(image_for_generation, caption="Image with Border")
with col2:
st.image(mask, caption="Mask (white areas will be generated)")
else: # Inpainting mode
# Canvas setup with dimension tracking
canvas_key = f"canvas_{width}_{height}"
if "last_image_dims" not in st.session_state:
st.session_state.last_image_dims = (width, height)
elif st.session_state.last_image_dims != (width, height):
clear_canvas_state()
st.session_state.last_image_dims = (width, height)
st.rerun()
try:
canvas_result = st_canvas(
fill_color="rgba(255, 255, 255, 0.0)",
stroke_width=st.slider("Brush size", 1, 500, 50),
stroke_color="#fff",
background_image=image,
height=height,
width=width,
drawing_mode="freedraw",
key=canvas_key,
display_toolbar=True,
)
except Exception as e:
st.error(f"Error creating canvas: {e}")
clear_canvas_state()
st.rerun()
return
# Sampling parameters
num_steps = int(st.number_input("Number of steps", min_value=1, value=50))
guidance = float(st.number_input("Guidance", min_value=1.0, value=30.0))
seed_str = st.text_input("Seed")
if seed_str.isdecimal():
seed = int(seed_str)
else:
st.info("No seed set, using random seed")
seed = None
save_samples = st.checkbox("Save samples?", True)
add_sampling_metadata = st.checkbox("Add sampling parameters to metadata?", True)
# Prompt input
prompt = st_keyup("Enter a prompt", value="", debounce=300, key="interactive_text")
# Setup output path
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
idx = len(fns)
if st.button("Generate"):
valid_input = False
if mode == "Inpainting" and canvas_result.image_data is not None:
valid_input = True
# Create mask from canvas
try:
mask = Image.fromarray(canvas_result.image_data)
mask = mask.getchannel("A") # Get alpha channel
mask_array = np.array(mask)
mask_array = (mask_array > 0).astype(np.uint8) * 255
mask = Image.fromarray(mask_array)
image_for_generation = image
except Exception as e:
st.error(f"Error creating mask: {e}")
return
elif mode == "Outpainting":
valid_input = True
# image_for_generation and mask are already set above
if not valid_input:
st.error("Please draw a mask or configure outpainting settings")
return
# Create temporary files
with (
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img,
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_mask,
):
try:
image_for_generation.save(tmp_img.name)
mask.save(tmp_mask.name)
except Exception as e:
st.error(f"Error saving temporary files: {e}")
return
try:
# Generate inpainting/outpainting
rng = torch.Generator(device="cpu")
if seed is None:
seed = rng.seed()
print(f"Generating with seed {seed}:\n{prompt}")
t0 = time.perf_counter()
x = get_noise(
1,
height,
width,
device=torch_device,
dtype=torch.bfloat16,
seed=seed,
)
if offload:
t5, clip, ae = t5.to(torch_device), clip.to(torch_device), ae.to(torch_device)
inp = prepare_fill(
t5,
clip,
x,
prompt=prompt,
ae=ae,
img_cond_path=tmp_img.name,
mask_path=tmp_mask.name,
)
timesteps = get_schedule(num_steps, inp["img"].shape[1], shift=True)
if offload:
t5, clip, ae = t5.cpu(), clip.cpu(), ae.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
x = denoise(model, **inp, timesteps=timesteps, guidance=guidance)
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
x = unpack(x.float(), height, width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s")
# Process and display result
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
if nsfw_score < NSFW_THRESHOLD:
buffer = BytesIO()
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;inpainting;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(buffer, format="jpeg", exif=exif_data, quality=95, subsampling=0)
img_bytes = buffer.getvalue()
if save_samples:
fn = output_name.format(idx=idx)
print(f"Saving {fn}")
with open(fn, "wb") as file:
file.write(img_bytes)
st.session_state["samples"] = {
"prompt": prompt,
"img": img,
"seed": seed,
"bytes": img_bytes,
}
else:
st.warning("Your generated image may contain NSFW content.")
st.session_state["samples"] = None
except Exception as e:
st.error(f"Error during generation: {e}")
return
finally:
# Clean up temporary files
try:
os.unlink(tmp_img.name)
os.unlink(tmp_mask.name)
except Exception as e:
print(f"Error cleaning up temporary files: {e}")
# Display results
samples = st.session_state.get("samples", None)
if samples is not None:
st.image(samples["img"], caption=samples["prompt"])
col1, col2 = st.columns(2)
with col1:
st.download_button(
"Download full-resolution",
samples["bytes"],
file_name="generated.jpg",
mime="image/jpg",
)
with col2:
if st.button("Continue from this image"):
# Store the generated image
new_image = samples["img"]
# Clear ALL canvas state
clear_canvas_state()
if "samples" in st.session_state:
del st.session_state["samples"]
# Set as current image
st.session_state["current_image"] = new_image
st.rerun()
st.write(f"Seed: {samples['seed']}")
if __name__ == "__main__":
st.set_page_config(layout="wide")
main()
|