maccmaccmaccc's picture
Update app.py
18971d1 verified
raw
history blame
2.87 kB
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike
import os
# Create an instance of CallbackManager
callback_manager = CallbackManager()
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = os.getenv('API_KEY')
llm = OpenAILike(
model=model,
api_base=api_base_url,
api_key=api_key,
is_chat_model=True,
callback_manager=callback_manager
)
st.set_page_config(page_title="llama_index_demo", page_icon="🦙")
st.title("llama_index_demo")
# 修改初始化模型函数
@st.cache_resource
def init_models():
# 使用 Hugging Face Hub 上的模型
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-MiniLM-L6-v2"
)
Settings.embed_model = embed_model
Settings.llm = llm
# 使用相对路径加载数据
documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
return query_engine
# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
st.session_state['query_engine'] = init_models()
def greet2(question):
response = st.session_state['query_engine'].query(question)
return response
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
return greet2(prompt_input)
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llama_index_response(prompt)
placeholder = st.empty()
placeholder.markdown(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)