maccmaccmaccc commited on
Commit
39c720d
·
verified ·
1 Parent(s): 2bf74f8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -82
app.py CHANGED
@@ -1,84 +1,4 @@
1
  import streamlit as st
2
- from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
- from llama_index.legacy.callbacks import CallbackManager
5
- from llama_index.llms.openai_like import OpenAILike
6
- import os
7
 
8
- # Create an instance of CallbackManager
9
- callback_manager = CallbackManager()
10
-
11
- api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
12
- model = "internlm2.5-latest"
13
- api_key = os.getenv('API_KEY')
14
-
15
- llm = OpenAILike(
16
- model=model,
17
- api_base=api_base_url,
18
- api_key=api_key,
19
- is_chat_model=True,
20
- callback_manager=callback_manager
21
- )
22
-
23
- st.set_page_config(page_title="llama_index_demo", page_icon="🦙")
24
- st.title("llama_index_demo")
25
-
26
- # 修改初始化模型函数
27
- @st.cache_resource
28
- def init_models():
29
- # 使用 Hugging Face Hub 上的模型
30
- embed_model = HuggingFaceEmbedding(
31
- model_name="sentence-transformers/all-MiniLM-L6-v2"
32
- )
33
- Settings.embed_model = embed_model
34
- Settings.llm = llm
35
-
36
- # 使用相对路径加载数据
37
- documents = SimpleDirectoryReader("data").load_data()
38
- index = VectorStoreIndex.from_documents(documents)
39
- query_engine = index.as_query_engine()
40
-
41
- return query_engine
42
-
43
- # 检查是否需要初始化模型
44
- if 'query_engine' not in st.session_state:
45
- st.session_state['query_engine'] = init_models()
46
-
47
- def greet2(question):
48
- response = st.session_state['query_engine'].query(question)
49
- return response
50
-
51
-
52
- # Store LLM generated responses
53
- if "messages" not in st.session_state.keys():
54
- st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
55
-
56
- # Display or clear chat messages
57
- for message in st.session_state.messages:
58
- with st.chat_message(message["role"]):
59
- st.write(message["content"])
60
-
61
- def clear_chat_history():
62
- st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
63
-
64
- st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
65
-
66
- # Function for generating LLaMA2 response
67
- def generate_llama_index_response(prompt_input):
68
- return greet2(prompt_input)
69
-
70
- # User-provided prompt
71
- if prompt := st.chat_input():
72
- st.session_state.messages.append({"role": "user", "content": prompt})
73
- with st.chat_message("user"):
74
- st.write(prompt)
75
-
76
- # Gegenerate_llama_index_response last message is not from assistant
77
- if st.session_state.messages[-1]["role"] != "assistant":
78
- with st.chat_message("assistant"):
79
- with st.spinner("Thinking..."):
80
- response = generate_llama_index_response(prompt)
81
- placeholder = st.empty()
82
- placeholder.markdown(response)
83
- message = {"role": "assistant", "content": response}
84
- st.session_state.messages.append(message)
 
1
  import streamlit as st
 
 
 
 
 
2
 
3
+ st.title("Test App")
4
+ st.write("Hello World!")